$\displaystyle \int{\sin{x} \,}dx \,=\, -\cos{x}+c$

$x$ is a variable, which represents an angle of a right triangle, and the trigonometric sine function in terms of $x$ is written as $\sin{x}$ in mathematical form. The indefinite integral of $\sin{x}$ function with respect to $x$ is written in the following mathematical form in calculus.

$\displaystyle \int{\sin{x} \,}dx$

The integration of $\sin{x}$ function with respect to $x$ is equal to sum of the negative $\cos{x}$ and constant of integration.

$\displaystyle \int{\sin{x} \,}dx \,=\, -\cos{x}+c$

The integration of sin function formula can be written in terms of any variable.

$(1) \,\,\,$ $\displaystyle \int{\sin{(b)} \,}db \,=\, -\cos{(b)}+c$

$(2) \,\,\,$ $\displaystyle \int{\sin{(h)} \,}dh \,=\, -\cos{(h)}+c$

$(3) \,\,\,$ $\displaystyle \int{\sin{(y)} \,}dy \,=\, -\cos{(y)}+c$

Learn how to derive the integration of sine function rule in integral calculus.

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved