Math Doubts

Proof of Integral of sinx formula

$x$ is a variable, which is considered as an angle of a right triangle and the sine function is written as $\sin{x}$ in trigonometric mathematics. The indefinite integral of $\sin{x}$ with respect to $x$ is written as follows to find the integration of sine function in calculus.

$\displaystyle \int{\sin{x} \,}dx$

Derivative of cos function

Write the derivative of cos function with respect to $x$ formula for expressing the differentiation of cosine function in mathematical form.

$\dfrac{d}{dx}{\, \cos{x}} \,=\, -\sin{x}$

$\implies$ $\dfrac{d}{dx}{(-\cos{x})} \,=\, \sin{x}$

Inclusion of an Arbitrary constant

According to differential calculus, the derivative of a constant is always zero. So, it doesn’t affect the process of the differentiation if an arbitrary constant $(c)$ is added to the trigonometric function $-\cos{x}$.

$\implies$ $\dfrac{d}{dx}{(-\cos{x}+c)} \,=\, \sin{x}$

Integral of sin function

The collection of all primitives of $\sin{x}$ function is called the indefinite integral of $\sin{x}$ function, which is written in the following mathematical form in integral calculus.

$\displaystyle \int{\sin{x} \,}dx$

In this case, the primitive or an antiderivative of $\sin{x}$ is $-\cos{x}$ and the constant of integration $c$.

$\dfrac{d}{dx}{(-\cos{x}+c)} = \sin{x}$ $\,\Longleftrightarrow\,$ $\displaystyle \int{\sin{x} \,}dx = -\cos{x}+c$

$\therefore \,\,\,\,\,\,$ $\displaystyle \int{\sin{x} \,}dx = -\cos{x}+c$

Therefore, it is proved that the antiderivative or indefinite integration of sine function is equal to the sum of the negative cos function and the constant of integration.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved