Assume, $x$ as a variable and represents angle of a right triangle. In trigonometry, the cosecant squared of angle $x$ is written as $\csc^2{x}$ or $\operatorname{cosec}^2{x}$ in mathematical form. The indefinite integration of cosecant squared function with respect to $x$ is written as the following mathematical form in differential calculus

$\displaystyle \int{\csc^2{x} \,}dx \,\,\,$ (or) $\,\,\, \displaystyle \int{\operatorname{cosec}^2{x} \,}dx$

Now, let us start deriving the integration formula for the cosecant squared function in integral calculus.

Express the derivative of cot function formula with respect to $x$ in mathematical form.

$\dfrac{d}{dx}{\, \cot{x}} \,=\, -\csc^2{x}$

$\implies$ $\dfrac{d}{dx}{\, (-\cot{x})} \,=\, \csc^2{x}$

As per differential calculus, the derivative of a constant is always zero. So, there is no problem in adding an arbitrary constant to cot function.

$\implies$ $\dfrac{d}{dx}{(-\cot{x}+c)} \,=\, \csc^2{x}$

According to integral calculus, the collection of all primitives of $\csc^2{x}$ function is called the integration of $\csc^2{x}$ function. It can be written in mathematical form in two ways.

$\displaystyle \int{\csc^2{x} \,}dx \,\,\,$ (or) $\,\,\, \displaystyle \int{\operatorname{cosec}^2{x} \,}dx$

The primitive or an antiderivative of $\csc^2{x}$ function is $-\cot{x}$ and the constant of integration ($c$) in this case.

$\dfrac{d}{dx}{(-\cot{x}+c)} = \csc^2{x}$ $\,\Longleftrightarrow\,$ $\displaystyle \int{\csc^2{x} \,}dx = -\cot{x}+c$

$\therefore \,\,\,\,\,\,$ $\displaystyle \int{\csc^2{x} \,}dx = -\cot{x}+c$

Therefore, it has proved that the indefinite integration of cosecant squared of an angle function is equal to the sum of the negative cot function and a constant of integration.

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Oct 22, 2024

Oct 17, 2024

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved