Math Doubts

Rational Power Rule of Exponents

Formula

$b^{\Large \frac{m}{n}} \,=\, \sqrt[\displaystyle n]{b^m}$

Introduction

The numbers contain rational numbers as exponents in some special cases. The value of each exponential term can be evaluated by calculating the square root or higher order root for power of the number.

Examples

$(1) \,\,\,\,\,\,$ $3^{\large \frac{1}{2}} \,=\, \sqrt{3}$

$(2) \,\,\,\,\,\,$ $5^{\large \frac{4}{3}} \,=\, \sqrt[\Large 3]{5^4}$

$(3) \,\,\,\,\,\,$ $2^{\large \frac{3}{7}} \,=\, \sqrt[\Large 7]{2^3}$

$(4) \,\,\,\,\,\,$ $11^{\large \frac{2}{5}} \,=\, \sqrt[\Large 5]{11^2}$

$(5) \,\,\,\,\,\,$ $9^{\large \frac{13}{6}} \,=\, \sqrt[\Large 6]{9^{13}}$

Proof

Learn how to derive the rational power rule of indices in algebraic form.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved