Math Doubts

Rational Power Rule of Exponents

Formula

$b^{\Large \frac{m}{n}} \,=\, \sqrt[\displaystyle n]{b^m}$

Introduction

The numbers contain rational numbers as exponents in some special cases. The value of each exponential term can be evaluated by calculating the square root or higher order root for power of the number.

Examples

$(1) \,\,\,\,\,\,$ $3^{\large \frac{1}{2}} \,=\, \sqrt{3}$

$(2) \,\,\,\,\,\,$ $5^{\large \frac{4}{3}} \,=\, \sqrt[\Large 3]{5^4}$

$(3) \,\,\,\,\,\,$ $2^{\large \frac{3}{7}} \,=\, \sqrt[\Large 7]{2^3}$

$(4) \,\,\,\,\,\,$ $11^{\large \frac{2}{5}} \,=\, \sqrt[\Large 5]{11^2}$

$(5) \,\,\,\,\,\,$ $9^{\large \frac{13}{6}} \,=\, \sqrt[\Large 6]{9^{13}}$

Proof

Learn how to derive the rational power rule of indices in algebraic form.

Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more