Math Doubts

Proof of Rational Power Rule of Exponents

The rational power rule of exponents can be derived in algebraic form to use it as a formula in mathematics.

Term with Rational Number as Power

$b$, $m$ and $n$ are three literals and they represent three different quantities. Take $b$ as a base and a fraction $\dfrac{m}{n}$ as exponent to form a special exponential term.

$b^{\Large \frac{m}{n}}$

Fractional Power in Product form

Now, write the fraction as product of two numbers to simplify the exponent.

$\implies$ $b^{\Large \frac{m}{n}} \,=\, b^{\, m \times \Large \frac{1}{n}}$

Simplifying the Expression

Now, use power rule of exponents to express the product of exponents as power of an exponent.

$\implies$ $b^{\Large \frac{m}{n}} \,=\, {\Big(b^m\Big)}^{\Large \frac{1}{n}} $

According to Radical power rule of exponents, the power of exponential term $b^m$ is a radical and it can be denoted by a radical symbol.

$\,\,\, \therefore \,\,\,\,\,\,$ $b^{\Large \frac{m}{n}} \,=\, \sqrt[\displaystyle n]{b^m}$



Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Mobile App for Android users Math Doubts Android App
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more