Math Doubts

Radical Power Rule of Exponents


$b^{\large \frac{\Large 1}{\displaystyle \normalsize n}} \,=\, \sqrt[\displaystyle n]{b}$

The fractional exponent of a number is equal to the square root or height order root of the number. It is called the radical power rule of the exponents.


In some special cases, the numbers contain rational numbers like $\dfrac{1}{2}$, $\dfrac{1}{3}$, $\dfrac{1}{4}$, $\cdots$ $\dfrac{1}{n}$ as exponents to express the square root or higher order roots of the numbers. Actually, the fractions are represented by radical symbols like square root $(\sqrt{\,\,\,\,})$, cube root $(\sqrt[\displaystyle 3]{\,\,\,\,})$, fourth root $(\sqrt[\displaystyle 4]{\,\,\,\,})$, $\cdots$ $n$-th root $(\sqrt[\displaystyle n]{\,\,\,\,})$ respectively in mathematics.


$(1) \,\,\,\,\,\,$ $6^{\large \frac{1}{2}} \,=\, \sqrt{6}$

$(2) \,\,\,\,\,\,$ $2^{\large \frac{1}{3}} \,=\, \sqrt[\displaystyle 3]{2}$

$(3) \,\,\,\,\,\,$ $7^{\large \frac{1}{4}} \,=\, \sqrt[\displaystyle 4]{7}$

$(4) \,\,\,\,\,\,$ $11^{\large \frac{1}{5}} \,=\, \sqrt[\displaystyle 5]{11}$

$(5) \,\,\,\,\,\,$ $9^{\large \frac{1}{6}} \,=\, \sqrt[\displaystyle 6]{9}$

Algebraic form

$b$ and $n$ are two literals. The $n$-th root of the literal number $b$ is written as $b^{\large \frac{\Large 1}{\displaystyle \normalsize n}}$. It is also expressed in radical form as $\sqrt[\displaystyle n]{b}$.

$\therefore \,\,\,\,\,\,$ $b^{\large \frac{\Large 1}{\displaystyle \normalsize n}} \,=\, \sqrt[\displaystyle n]{b}$

This power rule of exponents is called as the radical or fractional power rule of exponents.

Math Doubts

A best free mathematics education website that helps students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved