Consider two quantities and express each quantity in exponential notation but the exponent of both terms is same and it is denoted by $m$. Similarly, the bases of both terms are different and they are $b$ and $c$. The exponential terms $b^{\displaystyle m}$ and $c^{\displaystyle m}$ can be written in product form as follows.
$(1) \,\,\,$ $b^{\displaystyle m}$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle m \, factors}$
$(2) \,\,\,$ $c^{\displaystyle m}$ $\,=\,$ $\underbrace{c \times c \times c \times \ldots \times c}_{\displaystyle m \, factors}$
Now, let us derive the power of a quotient rule in algebraic form in mathematics.
Divide the exponential term $b^{\displaystyle m}$ by the $c^{\displaystyle m}$ for obtaining the quotient of them.
$\dfrac{b^{\displaystyle m}}{c^{\displaystyle m}}$ $\,=\,$ $\dfrac{b \times b \times b \times \ldots \times b}{c \times c \times c \times \ldots \times c}$
In this division, $b$ and $c$ are two unlike terms but the total number of factors of each term is $m$. Now, factorise the unlike terms but the total number of factors is $m$.
$\implies$ $\dfrac{b^{\displaystyle m}}{c^{\displaystyle m}}$ $\,=\,$ $\underbrace{\Bigg(\dfrac{b}{c}\Bigg) \times \Bigg(\dfrac{b}{c}\Bigg) \times \Bigg(\dfrac{b}{c}\Bigg) \times \ldots \times \Bigg(\dfrac{b}{c}\Bigg)}_{\displaystyle m \, factors}$
According to exponentiation, the product form of factors can be written in exponential form to prove this property of exponents.
$\,\,\, \therefore \,\,\,\,\,\,$ $\dfrac{b^{\displaystyle m}}{c^{\displaystyle m}} \,=\, {\Bigg(\dfrac{b}{c}\Bigg)}^{\displaystyle m}$
Therefore, it is proved that the quotient for the division of same exponents with different bases is equal to the power of a quotient of them.
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the maths problems in different methods with understandable steps.
Copyright © 2012 - 2021 Math Doubts, All Rights Reserved