In this limit problem, $x$ is a variable, which represents a real number and also an angle of the right triangle. The limit of the quotient of the exponential expression $e^{\displaystyle x}-e^{\displaystyle \sin{x}}$ by $x-\sin{x}$ as the input $x$ approaches zero, has to evaluate in this calculus problem.
$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x}-e^{\displaystyle \sin{x}}}{x-\sin{x}}}$
The given function contains exponential, trigonometric and also algebraic functions but the function is similar to the limit rule of $\dfrac{e^{\displaystyle x}-1}{x}$ as $x$ approaches $0$. So, if we eliminate $e^{\displaystyle \sin{x}}$ from the given function, then there is a possibility to convert the given function in our required form.
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\Big(e^{\displaystyle x}-e^{\displaystyle \sin{x}}\Big) \times 1}{x-\sin{x}}}$
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\Big(e^{\displaystyle x}-e^{\displaystyle \sin{x}}\Big) \times \dfrac{e^{\displaystyle \sin{x}}}{e^{\displaystyle \sin{x}}}}{x-\sin{x}}}$
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\Bigg(\dfrac{e^{\displaystyle x}-e^{\displaystyle \sin{x}}}{e^{\displaystyle \sin{x}}}\Bigg) \times e^{\displaystyle \sin{x}}}{x-\sin{x}}}$
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\Bigg(\dfrac{e^{\displaystyle x}}{e^{\displaystyle \sin{x}}}-\dfrac{e^{\displaystyle \sin{x}}}{e^{\displaystyle \sin{x}}}\Bigg) \times e^{\displaystyle \sin{x}}}{x-\sin{x}}}$
Use, the quotient rule of exponents with same base rule to simplify the expression in the numerator.
$= \,\,\,$ $\require{cancel} \displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\Bigg(e^{\displaystyle x-\sin{x}}-\dfrac{\cancel{e^{\displaystyle \sin{x}}}}{\cancel{e^{\displaystyle \sin{x}}}}\Bigg) \times e^{\displaystyle \sin{x}}}{x-\sin{x}}}$
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\Big(e^{\displaystyle x-\sin{x}}-1\Big) \times e^{\displaystyle \sin{x}}}{x-\sin{x}}}$
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Bigg[\Bigg(\dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}\Bigg) \times \Big(e^{\displaystyle \sin{x}}\Big)\Bigg]}$
It can be further simplified by using the product rule of limits.
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Bigg(\dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}\Bigg)}$ $\times$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(e^{\displaystyle \sin{x}}\Big)}$
$= \,\,\,$ $\displaystyle \Bigg(\large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}\Bigg)}$ $\times$ $\displaystyle \Big(\large \lim_{x \,\to\, 0}{\normalsize e^{\displaystyle \sin{x}}\Big)}$
Now, evaluate the limit of the $e$ raised to the power of $\sin{x}$ as $x$ approaches $0$ by the direct substitution method.
$= \,\,\,$ $\displaystyle \Bigg(\large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}\Bigg)}$ $\times$ $e^{\displaystyle \sin{(0)}}$
According to the sin 0 degrees, the sin of zero degrees is equal to zero.
$= \,\,\,$ $\displaystyle \Bigg(\large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}\Bigg)}$ $\times$ $e^{0}$
Use zero power rule of exponents to simplify the expression further.
$= \,\,\,$ $\displaystyle \Bigg(\large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}\Bigg)}$ $\times$ $1$
$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}}$
The given limit problem is almost simplified as the limit of $(e^{\displaystyle x}-1)/x$ as $x$ approaches $0$ formula.
Let $y = x-\sin{x}$ and convert the whole function in terms of $y$.
The above two steps have cleared that if $x$ approaches zero, then $y$ also tends to zero.
$\implies$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}}$ $\,=\,$ $\displaystyle \large \lim_{y \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle y}-1}{y}}$
$= \,\,\,$ $\displaystyle \large \lim_{y \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle y}-1}{y}}$
According to the limit of (ex-1)/x as x approaches 0 rule, the limit of $\dfrac{e^{\displaystyle y}-1}{y}$ as $y$ approaches zero is equal to one.
$= \,\,\, 1$
Therefore, it is evaluated that the limit of the ratio of $e^{\displaystyle x}-e^{\displaystyle \sin{x}}$ to $x-\sin{x}$ as $x$ approaches zero is equal to one.
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved