Math Doubts

Evaluate $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^x-e^{\sin{x}}}{x-\sin{x}}}$

In this limit problem, $x$ is a variable, which represents a real number and also an angle of the right triangle. The limit of the quotient of the exponential expression $e^{\displaystyle x}-e^{\displaystyle \sin{x}}$ by $x-\sin{x}$ as the input $x$ approaches zero, has to evaluate in this calculus problem.

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x}-e^{\displaystyle \sin{x}}}{x-\sin{x}}}$

Factorize the mathematical function

The given function contains exponential, trigonometric and also algebraic functions but the function is similar to the limit rule of $\dfrac{e^{\displaystyle x}-1}{x}$ as $x$ approaches $0$. So, if we eliminate $e^{\displaystyle \sin{x}}$ from the given function, then there is a possibility to convert the given function in our required form.

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\Big(e^{\displaystyle x}-e^{\displaystyle \sin{x}}\Big) \times 1}{x-\sin{x}}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\Big(e^{\displaystyle x}-e^{\displaystyle \sin{x}}\Big) \times \dfrac{e^{\displaystyle \sin{x}}}{e^{\displaystyle \sin{x}}}}{x-\sin{x}}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\Bigg(\dfrac{e^{\displaystyle x}-e^{\displaystyle \sin{x}}}{e^{\displaystyle \sin{x}}}\Bigg) \times e^{\displaystyle \sin{x}}}{x-\sin{x}}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\Bigg(\dfrac{e^{\displaystyle x}}{e^{\displaystyle \sin{x}}}-\dfrac{e^{\displaystyle \sin{x}}}{e^{\displaystyle \sin{x}}}\Bigg) \times e^{\displaystyle \sin{x}}}{x-\sin{x}}}$

Use, the quotient rule of exponents with same base rule to simplify the expression in the numerator.

$= \,\,\,$ $\require{cancel} \displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\Bigg(e^{\displaystyle x-\sin{x}}-\dfrac{\cancel{e^{\displaystyle \sin{x}}}}{\cancel{e^{\displaystyle \sin{x}}}}\Bigg) \times e^{\displaystyle \sin{x}}}{x-\sin{x}}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\Big(e^{\displaystyle x-\sin{x}}-1\Big) \times e^{\displaystyle \sin{x}}}{x-\sin{x}}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Bigg[\Bigg(\dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}\Bigg) \times \Big(e^{\displaystyle \sin{x}}\Big)\Bigg]}$

It can be further simplified by using the product rule of limits.

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Bigg(\dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}\Bigg)}$ $\times$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \Big(e^{\displaystyle \sin{x}}\Big)}$

$= \,\,\,$ $\displaystyle \Bigg(\large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}\Bigg)}$ $\times$ $\displaystyle \Big(\large \lim_{x \,\to\, 0}{\normalsize e^{\displaystyle \sin{x}}\Big)}$

Evaluate the Limit of the function

Now, evaluate the limit of the $e$ raised to the power of $\sin{x}$ as $x$ approaches $0$ by the direct substitution method.

$= \,\,\,$ $\displaystyle \Bigg(\large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}\Bigg)}$ $\times$ $e^{\displaystyle \sin{(0)}}$

According to the sin 0 degrees, the sin of zero degrees is equal to zero.

$= \,\,\,$ $\displaystyle \Bigg(\large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}\Bigg)}$ $\times$ $e^{0}$

Use zero power rule of exponents to simplify the expression further.

$= \,\,\,$ $\displaystyle \Bigg(\large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}\Bigg)}$ $\times$ $1$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}}$

Evaluate the Limit of the remaining function

The given limit problem is almost simplified as the limit of $(e^{\displaystyle x}-1)/x$ as $x$ approaches $0$ formula.

Let $y = x-\sin{x}$ and convert the whole function in terms of $y$.

  1. If $x \to 0$, then $\sin{x} \to \sin{(0)}$. Therefore, $\sin{x} \to 0$
  2. If $x \to 0$ and $\sin{x} \to 0$, then $x-\sin{x} \to 0$. In this case, we have assumed that $y = x-\sin{x}$. Therefore $y \to 0$.

The above two steps have cleared that if $x$ approaches zero, then $y$ also tends to zero.

$\implies$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle x-\sin{x}}-1}{x-\sin{x}}}$ $\,=\,$ $\displaystyle \large \lim_{y \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle y}-1}{y}}$

$= \,\,\,$ $\displaystyle \large \lim_{y \,\to\, 0}{\normalsize \dfrac{e^{\displaystyle y}-1}{y}}$

According to the limit of (ex-1)/x as x approaches 0 rule, the limit of $\dfrac{e^{\displaystyle y}-1}{y}$ as $y$ approaches zero is equal to one.

$= \,\,\, 1$

Therefore, it is evaluated that the limit of the ratio of $e^{\displaystyle x}-e^{\displaystyle \sin{x}}$ to $x-\sin{x}$ as $x$ approaches zero is equal to one.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved