# Evaluate $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{\sqrt{x}+\sqrt{x}+\sqrt{x}-3}{x-1}}$

In this limit problem, there are three terms in radical form in the numerator. The limit of the algebraic function can be evaluated by simplifying this function same as the known form.

### Write the value of Radical symbol

$\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{\sqrt{x}+\sqrt{x}+\sqrt{x}-3}{x-1}}$

In numerator, the first three terms have different radical symbols and they can be expressed in exponential form.

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^\frac{1}{3}+x^\frac{1}{4}+x^\frac{1}{5}-3}{x-1}}$

### Convert the function same as Limit Rule

According to limit rule of algebraic function, the limit of algebraic function can be converted same as the limit of $\dfrac{x^n-a^n}{x-a}$ as $x$ approaches $a$ rule.

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^\frac{1}{3}+x^\frac{1}{4}+x^\frac{1}{5}-1-1-1}{x-1}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^\frac{1}{3}-1+x^\frac{1}{4}-1+x^\frac{1}{5}-1}{x-1}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \Bigg[\dfrac{x^\frac{1}{3}-1}{x-1}+\dfrac{x^\frac{1}{4}-1}{x-1}+\dfrac{x^\frac{1}{5}-1}{x-1}\Bigg]}$

Now, use addition rule of limits to express limit of sum of three functions as sum of their limits.

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^\frac{1}{3}-1}{x-1}}$ $+$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^\frac{1}{4}-1}{x-1}}$ $+$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^\frac{1}{5}-1}{x-1}}$

$= \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^\frac{1}{3}-{(1)}^\frac{1}{3}}{x-1}}$ $+$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^\frac{1}{4}-{(1)}^\frac{1}{4}}{x-1}}$ $+$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^\frac{1}{5}-{(1)}^\frac{1}{5}}{x-1}}$

### Evaluate the Limit of Each function

$\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^\frac{1}{3}-{(1)}^\frac{1}{3}}{x-1}}$ $+$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^\frac{1}{4}-{(1)}^\frac{1}{4}}{x-1}}$ $+$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \dfrac{x^\frac{1}{5}-{(1)}^\frac{1}{5}}{x-1}}$

Now, evaluate limit of each function as per limit of (xn-an)/(x-a) as x approaches a rule.

$= \,\,\,$ $\dfrac{1}{3} \times {(1)}^{\frac{1}{3}-1}$ $+$ $\dfrac{1}{4} \times {(1)}^{\frac{1}{4}-1}$ $+$ $\dfrac{1}{5} \times {(1)}^{\frac{1}{5}-1}$

$= \,\,\,$ $\dfrac{1}{3} \times {(1)}^{\frac{1-3}{3}}$ $+$ $\dfrac{1}{4} \times {(1)}^{\frac{1-4}{4}}$ $+$ $\dfrac{1}{5} \times {(1)}^{\frac{1-5}{5}}$

$= \,\,\,$ $\dfrac{1}{3} \times {(1)}^{\frac{-2}{3}}$ $+$ $\dfrac{1}{4} \times {(1)}^{\frac{-3}{4}}$ $+$ $\dfrac{1}{5} \times {(1)}^{\frac{-4}{5}}$

$= \,\,\,$ $\dfrac{1}{3} \times 1$ $+$ $\dfrac{1}{4} \times 1$ $+$ $\dfrac{1}{5} \times 1$

$= \,\,\,$ $\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}$

$= \,\,\,$ $\dfrac{20 \times 1 + 15 \times 1 + 12 \times 1}{60}$

$= \,\,\,$ $\dfrac{20+15+12}{60}$

$= \,\,\,$ $\dfrac{47}{60}$

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

Latest Math Problems
Jul 01, 2023
Jun 25, 2023
###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.