There are six limit rules for the algebraic functions in calculus and they’re used as formulas to find the limits of algebraic functions. One limit rule is purely in algebraic form, another one rule is in logarithmic form and remaining formulas are in exponential form.
$(1) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \dfrac{x^n-a^n}{x-a}}$ $\,=\,$ $na^{n-1}$
$(2) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\log_{e}{(1+x)}}{x}}$ $\,=\,$ $1$
$(3) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{a^x-1}{x}}$ $\,=\,$ $\log_{e}{a}$
$(4) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{e^x-1}{x}}$ $\,=\,$ $1$
$(5) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {(1+x)}^{\frac{1}{x}}}$ $\,=\,$ $e$
$(6) \,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize {\Bigg(1+\dfrac{1}{x}\Bigg)}^x}$ $\,=\,$ $e$
List of solved problems for evaluating limits of algebraic functions by using limit formulas for learning and practicing.
A best free mathematics education website that helps students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
A math help place with list of solved problems with answers and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved