In trigonometry, there are four popular double angle trigonometric identities and they are used as formulae in theorems and in solving the problems. So, let’s learn each double angle identity with mathematical proof.

The sine of double angle is equal to two times the product of sine and cosine of angle.

$(1).\,\,$ $\sin{2\theta} \,=\, 2\sin{\theta}\cos{\theta}$

$(2).\,\,$ $\sin{2x} \,=\, 2\sin{x}\cos{x}$

The cosine of double angle is equal to the subtraction of square of sine from square of cosine of angle.

$(1).\,\,$ $\cos{2\theta} \,=\, \cos^2{\theta}-\sin^2{\theta}$

$(2).\,\,$ $\cos{2x} \,=\, \cos^2{x}-\sin^2{x}$

$(1).\,\,$ $\tan{2\theta} \,=\, \dfrac{2\tan{\theta}}{1-\tan^2{\theta}}$

$(2).\,\,$ $\tan{2x} \,=\, \dfrac{2\tan{x}}{1-\tan^2{x}}$

$(1).\,\,$ $\cot{2\theta} \,=\, \dfrac{\cot^2{\theta}-1}{2\cot{\theta}}$

$(2).\,\,$ $\cot{2x} \,=\, \dfrac{\cot^2{x}-1}{2\cot{x}}$

Learn how to use the double angle trigonometric identities as formulae in mathematical problems.

Latest Math Topics

Dec 13, 2023

Jul 20, 2023

Jun 26, 2023

Latest Math Problems

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved