Math Doubts

Cot Double angle formula

Expansion form

$\cot{2\theta} \,=\, \dfrac{\cot^2{\theta}-1}{2\cot{\theta}}$

Simplified form

$\dfrac{\cot^2{\theta}-1}{2\cot{\theta}} \,=\, \cot{2\theta}$

Introduction

It is called cot double angle identity and used as a formula in two cases.

  1. Cot of double angle is expanded as the quotient of subtraction of one from square of cot function by twice the cot function.
  2. The quotient of subtraction of one from square of cot function by twice the cot function is simplified as cot of double angle.

How to use

The co-tangent of double angle identity is used to either expand or simplify the double angle functions like $\cot{2A}$, $\cot{2x}$, $\cot{2\alpha}$ and etc. For example,

$(1) \,\,\,\,\,\,$ $\cot{2x} \,=\, \dfrac{\cot^2{x}-1}{2\cot{x}}$

$(2) \,\,\,\,\,\,$ $\cot{2A} \,=\, \dfrac{\cot^2{A}-1}{2\cot{A}}$

$(3) \,\,\,\,\,\,$ $\cot{2\alpha} \,=\, \dfrac{\cot^2{\alpha}-1}{2\cot{\alpha}}$

Proof

Learn how to derive the rule of cot double angle identity by geometric approach in trigonometry.



Follow us
Email subscription
Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Mobile App for Android users Math Doubts Android App
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more