$\cot{2\theta} \,=\, \dfrac{\cot^2{\theta}-1}{2\cot{\theta}}$

$\dfrac{\cot^2{\theta}-1}{2\cot{\theta}} \,=\, \cot{2\theta}$

It is called cot double angle identity and used as a formula in two cases.

- Cot of double angle is expanded as the quotient of subtraction of one from square of cot function by twice the cot function.
- The quotient of subtraction of one from square of cot function by twice the cot function is simplified as cot of double angle.

The co-tangent of double angle identity is used to either expand or simplify the double angle functions like $\cot{2A}$, $\cot{2x}$, $\cot{2\alpha}$ and etc. For example,

$(1) \,\,\,\,\,\,$ $\cot{2x} \,=\, \dfrac{\cot^2{x}-1}{2\cot{x}}$

$(2) \,\,\,\,\,\,$ $\cot{2A} \,=\, \dfrac{\cot^2{A}-1}{2\cot{A}}$

$(3) \,\,\,\,\,\,$ $\cot{2\alpha} \,=\, \dfrac{\cot^2{\alpha}-1}{2\cot{\alpha}}$

Learn how to derive the rule of cot double angle identity by geometric approach in trigonometry.

Latest Math Topics

Jul 24, 2022

Jul 15, 2022

Latest Math Problems

Jul 29, 2022

Jul 17, 2022

Jun 02, 2022

Apr 06, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved