$\cot{2\theta} \,=\, \dfrac{\cot^2{\theta}-1}{2\cot{\theta}}$

$\dfrac{\cot^2{\theta}-1}{2\cot{\theta}} \,=\, \cot{2\theta}$

It is called cot double angle identity and used as a formula in two cases.

- Cot of double angle is expanded as the quotient of subtraction of one from square of cot function by twice the cot function.
- The quotient of subtraction of one from square of cot function by twice the cot function is simplified as cot of double angle.

The co-tangent of double angle identity is used to either expand or simplify the double angle functions like $\cot{2A}$, $\cot{2x}$, $\cot{2\alpha}$ and etc. For example,

$(1) \,\,\,\,\,\,$ $\cot{2x} \,=\, \dfrac{\cot^2{x}-1}{2\cot{x}}$

$(2) \,\,\,\,\,\,$ $\cot{2A} \,=\, \dfrac{\cot^2{A}-1}{2\cot{A}}$

$(3) \,\,\,\,\,\,$ $\cot{2\alpha} \,=\, \dfrac{\cot^2{\alpha}-1}{2\cot{\alpha}}$

Learn how to derive the rule of cot double angle identity by geometric approach in trigonometry.

Latest Math Topics

Jun 05, 2023

Jun 01, 2023

May 21, 2023

May 16, 2023

May 10, 2023

Latest Math Problems

Jun 08, 2023

May 09, 2023

A best free mathematics education website that helps students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved