# Multiple angle identities

The trigonometric functions are often appeared with multiple angles. It is not possible to find their values directly but their values can be evaluated by expressing each trigonometric function in its expansion form. Now, learn how to expand trigonometric functions with multiple angles. The following multiple angle identities are used as formulae in mathematics.

### Double angle formulas

Learn how to expand double angle trigonometric functions in terms of trigonometric functions.

$(1)\,\,\,\,$ $\sin{2\theta}$ $\,=\,$ $2\sin{\theta}\cos{\theta}$

$(2)\,\,\,\,$ $\cos{2\theta}$ $\,=\,$ $\cos^2{\theta}-\sin^2{\theta}$

$(3)\,\,\,\,$ $\tan{2\theta}$ $\,=\,$ $\dfrac{2\tan{\theta}}{1-\tan^2{\theta}}$

$(4)\,\,\,\,$ $\cot{2\theta}$ $\,=\,$ $\dfrac{\cot^2{\theta}-1}{2\cot{\theta}}$

### Triple angle formulas

Learn how to expand triple angle trigonometric functions in terms of trigonometric functions.

$(1)\,\,\,\,$ $\sin{3\theta}$ $\,=\,$ $3\sin{\theta}-4\sin^3{\theta}$

$(2)\,\,\,\,$ $\cos{3\theta}$ $\,=\,$ $4\cos^3{\theta}-3\cos{\theta}$

$(3)\,\,\,\,$ $\tan{3\theta}$ $\,=\,$ $\dfrac{3\tan{\theta}-\tan^3{\theta}}{1-3\tan^2{\theta}}$

$(4)\,\,\,\,$ $\cot{3\theta}$ $\,=\,$ $\dfrac{3\cot{\theta}-\cot^3{\theta}}{1-3\cot^2{\theta}}$

Latest Math Topics
Jun 26, 2023

###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.