Math Doubts

Division of Algebraic Terms

A mathematical operation of dividing an algebraic term by another algebraic term is called the division of algebraic terms.


In algebra, two algebraic terms are connected by the division sign ($\div$) to obtain the quotient of them. There are two cases of dividing the algebraic terms because of the classification of the algebraic terms. It is very important to learn both of the cases to divide any algebraic term by another term.

Required knowledge

For dividing the algebraic terms, learn the following two mathematical concepts firstly.

  1. Exponents or Indices
  2. Quotient Rules of Exponents

Now, let us start learning the different cases for dividing the algebraic terms in algebra.

Dividing the Like Terms

Two like algebraic terms are involved in division but the quotient of them is a rational number due to their similarity. Actually, the like algebraic terms have the same literal coefficient and it is a main cause for the disappearance of the literal coefficient in the quotient of them.


$(1) \,\,\,$ $\dfrac{4a}{2a} \,=\, 2$

$(2) \,\,\,$ $\dfrac{-3g^2}{7g^2} \,=\, -\dfrac{3}{7}$

$(3) \,\,\,$ $\dfrac{2x^2yz^2}{8x^2yz^2} \,=\, \dfrac{1}{4}$

Dividing the Unlike Terms

Similarly, two unlike algebraic terms are also involved in the mathematical operation division but the quotient of them is an algebraic term because of their dissimilarity. In fact, the unlike algebraic terms have different literal coefficients and it makes the division of any two unlike algebraic terms to form another algebraic term as their quotient.


$(1) \,\,\,$ $\dfrac{6a}{2b} \,=\, \dfrac{3a}{b}$

$(2) \,\,\,$ $\dfrac{g^2}{6h^2} \,=\, \dfrac{g^2}{6h^2}$

$(3) \,\,\,$ $\dfrac{-14xy^2z}{7xyz^2} \,=\, -\dfrac{2y}{z}$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved