# Unlike algebraic terms

The algebraic terms whose literal coefficients are not same, are called the unlike algebraic terms.

## Introduction

The unlikeness of two or more algebraic terms are actually determined by their literal coefficients. If the literal coefficients of two or more algebraic terms are not same, then the algebraic terms are looked dissimilar, and they are called as unlike algebraic terms. So, the property of the unlikeness is a key factor for determining the unlike algebraic terms in algebra.

#### Example

$5xy$ and $6x^2y$ are two algebraic terms.

Look at the two algebraic terms, and it seems they are dissimilar. It can be confirmed mathematically by determining the literal coefficients of them and it helps us to check the property of unlikeness of them mathematically.

$5xy = 5 \times xy$ and $6x^2y = 6 \times x^2y$

$xy$ is the literal coefficient of $5$ in the first algebraic term and $x^2y$ is the literal coefficient of $6$ in the second algebraic term. The literal coefficients of them are not same. Due to this reason, the two algebraic terms are looked dissimilar and they are called as unlike algebraic terms.

### Examples

Look at the following examples to understand unlike algebraic terms clearly.

$(1) \,\,\,$ $2a$, $6b$

$(2) \,\,\,$ $l^2$, $\dfrac{l^2m}{5}$, $-0.25l^2m^2$

$(3) \,\,\,$ $4m$, $4mn$, $4m^2n$, $4mn^2$

$(4) \,\,\,$ $-4p^3qr$, $10pq^2r^3$

$(5) \,\,\,$ $-x$, $x^2$, $3xy$, $6xz$, $-176xyz$

###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.