Math Doubts

Derivative of cosx Proof

The derivative of cos function with respect to a variable is equal to negative sine. If $x$ denotes a variable, then the cosine function is expressed as $\cos{x}$ in mathematics. So, the differentiation of the $\cos{x}$ with respect to $x$ is equal to $-\sin{x}$ and it is proved from first principle mathematically.

Beginner’s Method

On the basis of definition of the derivative, the derivative of the function with respect to $x$ can be written in the following limiting operation form.

$\dfrac{d}{dx}{\, f(x)}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{f(x+h)-f(x)}{h}}$

Take $f{(x)} = \cos{x}$, then $f{(x+h)} = \cos{(x+h)}$. Now, the mathematical proof for the differentiation of $\cos{x}$ function with respect to $x$ can be derived from first principle.

$\implies \dfrac{d}{dx}{\, (\cos{x})}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{(x+h)}-\cos{x}}{h}}$

Simplify the Trigonometric expression

$\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{(x+h)}-\cos{x}}{h}}$

The simplification of the trigonometric expression in the numerator can be started by expanding the $\cos{(x+h)}$ function as per the angle sum identity of cos function.

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{x}\cos{h}-\sin{x}\sin{h}-\cos{x}}{h}}$

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{x}\cos{h}-\cos{x}-\sin{x}\sin{h}}{h}}$

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{x}{(\cos{h}-1)}-\sin{x}\sin{h}}{h}}$

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{x}{((-1)(1-\cos{h}))}-\sin{x}\sin{h}}{h}}$

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{{(-\cos{x})}{(1-\cos{h})}-\sin{x}\sin{h}}{h}}$

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \Bigg[\dfrac{{(-\cos{x})}{(1-\cos{h})}-\sin{x}\sin{h}}{h}\Bigg]}$

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \Bigg[\dfrac{{(-\cos{x})}{(1-\cos{h})}}{h} – \dfrac{\sin{x}\sin{h}}{h}\Bigg]}$

According to difference rule of limits, the limit of the difference of two functions can be evaluated by evaluating the difference of their limits.

$= \,\,\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{{(-\cos{x})}{(1-\cos{h})}}{h}}$ $-$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin{x}\sin{h}}{h}}$

The input of limiting operations is in terms of $h$. So, the functions in terms of $x$ are constant functions. Therefore, $-\cos{x}$ from first function and $\sin{x}$ from second function can be separated according to the constant multiple rule of limits.

$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{1-\cos{h}}{h}}$ $-$ ${(\sin{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin{h}}{h}}$

Evaluate Limit of Trigonometric function

$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{1-\cos{h}}{h}}$ $-$ ${(\sin{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin{h}}{h}}$

According to the limit of trigonometric function rule, the limit of $\sin{h}/{h}$ as $h$ approaches $0$ is equal to one.

$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{1-\cos{h}}{h}}$ $-$ ${(\sin{x})} \times 1$

$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{1-\cos{h}}{h}}$ $-\sin{x}$

Continue simplifying the expression

$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{1-\cos{h}}{h}}$ $-\sin{x}$

The trigonometric expression in the numerator in the first term of the expression can be simplified by the power reduction rule of sine function.

$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{2\sin^2{\Big(\dfrac{h}{2}\Big)}}{h}}$ $-\sin{x}$

The number $2$ is a factor and multiplying sine function in the numerator and it divides the denominator. It is recommendable to shift it to denominator for simplifying the term further.

$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin^2{\Big(\dfrac{h}{2}\Big)}}{\dfrac{h}{2}}}$ $-\sin{x}$

$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin{\Big(\dfrac{h}{2}\Big)} \times \sin{\Big(\dfrac{h}{2}\Big)}}{\dfrac{h}{2}}}$ $-\sin{x}$

$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \Bigg[\dfrac{\sin{\Big(\dfrac{h}{2}\Big)}}{\dfrac{h}{2}} \times \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$

The limit of product of two functions can be written as product of their limits by the product rule of limits.

$= \,\,\,$ ${(-\cos{x})} \times \Bigg[ \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin{\Big(\dfrac{h}{2}\Big)}}{\dfrac{h}{2}}} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$

Evaluate Limits of trigonometric functions

$= \,\,\,$ ${(-\cos{x})} \times \Bigg[ \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\sin{\Big(\dfrac{h}{2}\Big)}}{\dfrac{h}{2}}} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$

If $h \to 0$, then $\dfrac{h}{2} \to \dfrac{0}{2}$. So, $\dfrac{h}{2} \to 0$. Therefore, if $h$ approaches $0$, then $\dfrac{h}{2}$ also approaches $0$.

$= \,\,\,$ ${(-\cos{x})} \times \Bigg[ \displaystyle \large \lim_{\frac{h}{2} \,\to\, 0}{\normalsize \dfrac{\sin{\Big(\dfrac{h}{2}\Big)}}{\dfrac{h}{2}}} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$

Take $t = \dfrac{h}{2}$ and transform the first limit function only in the first term of the expression.

$= \,\,\,$ ${(-\cos{x})} \times \Bigg[ \displaystyle \large \lim_{t \,\to\, 0}{\normalsize \dfrac{\sin{t}}{t}} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$

Therefore, the limit of the quotient of $\sin{t}$ by $t$ as $t$ tends to $0$ is equal to one.

$= \,\,\,$ ${(-\cos{x})} \times \Bigg[1 \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$

$= \,\,\,$ ${(-\cos{x})} \times \Bigg[\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)} \Bigg]}$ $-\sin{x}$

$= \,\,\,$ ${(-\cos{x})} \times \displaystyle \large \lim_{h \,\to\, 0}{\normalsize \sin{\Big(\dfrac{h}{2}\Big)}}$ $-\sin{x}$

Now, evaluate the limit of the trigonometric function by the direct substitution method.

$= \,\,\,$ ${(-\cos{x})} \times \sin{\Big(\dfrac{0}{2}\Big)}$ $-\sin{x}$

$= \,\,\,$ ${(-\cos{x})} \times \sin{(0)}$ $-\sin{x}$

The exact value of the sine of zero degrees is zero.

$= \,\,\,$ ${(-\cos{x})} \times 0$ $-\sin{x}$

$= \,\,\,$ $0-\sin{x}$

$= \,\,\,$ $-\sin{x}$

$\therefore \,\,\,\,\,\, \dfrac{d}{dx}{\, (\cos{x})} \,=\, -\sin{x}$

Therefore, it is proved by first principle that the derivative of $\cos{x}$ with respect to $x$ is equal to negative $\sin{x}$.

Advanced Method

According to definition of the derivative, the differentiation of the function in terms of $x$ can be written in the following limiting operation form.

$\dfrac{d}{dx}{\, f(x)}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{f(x+\Delta x)-f(x)}{\Delta x}}$

Take $f{(x)} = \cos{x}$, then $f{(x+\Delta x)} = \cos{(x+\Delta x)}$. Now, the proof of derivative of $\cos{x}$ function with respect to $x$ can be started by the first principle.

$\implies \dfrac{d}{dx}{\, (\cos{x})}$ $\,=\,$ $\displaystyle \large \lim_{h \,\to\, 0}{\normalsize \dfrac{\cos{(x+\Delta x)}-\cos{x}}{\Delta x}}$

Try difference to product conversion rule

Now, use difference to product identity of cos functions to combine the difference of two cosine functions in the numerator of the function.

$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{-2\sin{\Bigg[\dfrac{x+\Delta x+x}{2}\Bigg]}\sin{\Bigg[\dfrac{x+\Delta x-x}{2}\Bigg]}}{\Delta x}}$

$= \,\,\,$ $\require{cancel} \displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{-2\sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]}\sin{\Bigg[\dfrac{\cancel{x}+\Delta x-\cancel{x}}{2}\Bigg]}}{\Delta x}}$

$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{-2\sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]}\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\Delta x}}$

$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{-1 \times 2 \times \sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]}\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\Delta x}}$

Simplify the entire function

The factor $2$ multiplies the other factors in the numerator and it divides the denominator. So, it can be shifted to denominator.

$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{-1 \times \sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]}\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$

$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{-\sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]}\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$

Now, divide the whole function as product of two functions.

$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \Bigg(-\sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]} \times \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}\Bigg)}$

As per the product rule of limits, the limit of product of functions is equal to product of their limits.

$= \,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize -\sin{\Bigg[\dfrac{2x+\Delta x}{2}\Bigg]}}$ $\times$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$

Find Limit of the function

Firstly, evaluate the limit of the sin function by using direct substitution method.

$= \,\,\,$ $-\sin{\Bigg[\dfrac{2x+0}{2}\Bigg]}$ $\times$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$

$= \,\,\,$ $-\sin{\Bigg[\dfrac{2x}{2}\Bigg]}$ $\times$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$

$= \,\,\,$ $\require{cancel} -\sin{\Bigg[\dfrac{\cancel{2}x}{\cancel{2}}\Bigg]}$ $\times$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$

$= \,\,\,$ $-\sin{x}$ $\times$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$

The limit of second sine function is almost similar to the limit of sinx/x as x approaches 0 rule but its input is slightly different. Therefore, set this function same as the standard result.

If, $\Delta x \,\to\, 0$, then $\dfrac{\Delta x}{2} \,\to\, \dfrac{0}{2}$. So, $\dfrac{\Delta x}{2} \,\to\, 0$. It proved that if $\Delta x$ approaches $0$, then $\dfrac{\Delta x}{2}$ also tends to zero.

$= \,\,\,$ $-\sin{x}$ $\times$ $\displaystyle \large \lim_{\frac{\Delta x}{2} \,\to\, 0}{\normalsize \dfrac{\sin{\Bigg[\dfrac{\Delta x}{2}\Bigg]}}{\dfrac{\Delta x}{2}}}$

Take $m = \dfrac{\Delta x}{2}$ and then transform the entire function in terms of $m$.

$= \,\,\,$ $-\sin{x}$ $\times$ $\displaystyle \large \lim_{m \,\to\, 0}{\normalsize \dfrac{\sin{m}}{m}}$

The limit of trigonometric function is same as the limit of $\sin{x}/x$ as $x$ tends to $0$ formula exactly. Therefore, the limit of trigonometric function is equal to $1$.

$= \,\,\,$ $-\sin{x} \times 1$

$= \,\,\,$ $-\sin{x}$

$\therefore \,\,\,\,\,\, {(\cos{x})}’ \,=\, -\sin{x}$

Therefore, it has proved from first principle that the differentiation of cos function with respect to a variable is equal to negative sine.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved