# Sub multiple angle identities

In some cases, it is essential to express trigonometric functions in terms of sum multiple angle trigonometric functions to find their values mathematically. So, learn how to expand trigonometric functions in terms of trigonometric functions which contain sub multiple angles. The following submultiple angle identities are used as formulae in trigonometric mathematics but they are similar to multiple angle formulas.

### Half angle formulas

Learn how to expand trigonometric functions in terms of half angle trigonometric functions.

$(1)\,\,\,\,$ $\sin{\theta}$ $\,=\,$ $2\sin{\Big(\dfrac{\theta}{2}\Big)}\cos{\Big(\dfrac{\theta}{2}\Big)}$

$(2)\,\,\,\,$ $\cos{\theta}$ $\,=\,$ $\cos^2{\Big(\dfrac{\theta}{2}\Big)}-\sin^2{\Big(\dfrac{\theta}{2}\Big)}$

$(3)\,\,\,\,$ $\tan{\theta}$ $\,=\,$ $\dfrac{2\tan{\Big(\dfrac{\theta}{2}\Big)}}{1-\tan^2{\Big(\dfrac{\theta}{2}\Big)}}$

$(4)\,\,\,\,$ $\cot{\theta}$ $\,=\,$ $\dfrac{\cot^2{\Big(\dfrac{\theta}{2}\Big)}-1}{2\cot{\Big(\dfrac{\theta}{2}\Big)}}$

### One third angle formulas

Learn how to expand trigonometric functions in terms of one third angle trigonometric functions.

$(1)\,\,\,\,$ $\sin{\theta}$ $\,=\,$ $3\sin{\Big(\dfrac{\theta}{3}\Big)}-4\sin^3{\Big(\dfrac{\theta}{3}\Big)}$

$(2)\,\,\,\,$ $\cos{\theta}$ $\,=\,$ $4\cos^3{\Big(\dfrac{\theta}{3}\Big)}-3\cos{\Big(\dfrac{\theta}{3}\Big)}$

$(3)\,\,\,\,$ $\tan{\theta}$ $\,=\,$ $\dfrac{3\tan{\Big(\dfrac{\theta}{3}\Big)}-\tan^3{\Big(\dfrac{\theta}{3}\Big)}}{1-3\tan^2{\Big(\dfrac{\theta}{3}\Big)}}$

$(4)\,\,\,\,$ $\cot{\theta}$ $\,=\,$ $\dfrac{3\cot{\Big(\dfrac{\theta}{3}\Big)}-\cot^3{\Big(\dfrac{\theta}{3}\Big)}}{1-3\cot^2{\Big(\dfrac{\theta}{3}\Big)}}$

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

Latest Math Problems
Jul 01, 2023
Jun 25, 2023
###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.