$(1) \,\,\,$ ${(a-b)}^2$ $\,=\,$ $a^2+b^2-2ab$

$(2) \,\,\,$ ${(x-y)}^2$ $\,=\,$ $x^2+y^2-2xy$

The square of the difference of any two quantities is equals to the twice the product of them subtracted from sum of squares of them, is called the square of the difference formula.

The square of the difference formula is a most useful fundamental property of mathematics. It is used to find the square of difference of any two quantities by expanding its value in terms of them. In mathematics, the square of the difference formula is expressed in the following two forms. They both are same and you can use any one of them to evaluate the square of the difference of any two quantities by its expansion.

$(1) \,\,\,$ ${(a-b)}^2$ $\,=\,$ $a^2+b^2-2ab$

$(2) \,\,\,$ ${(x-y)}^2$ $\,=\,$ $x^2+y^2-2xy$

The square of the difference formula is also called as the special product of binomials because the square of binomial $a-b$ or $x-y$ can be obtained by the product of two same binomials.

$(1) \,\,\,$ ${(a-b)}^2$ $\,=\,$ ${(a-b)}{(a-b)}$

$(2) \,\,\,$ ${(x-y)}^2$ $\,=\,$ ${(x-y)}{(x-y)}$

Take $a = 5$ and $b = 3$, Now, substitute them in both sides of the equation and compare them for understanding this property mathematically.

$(1). \,\,\,$ Find square of the difference of both quantities.

${(a-b)}^2$ $\,=\,$ ${(5-3)}^2$

$\implies$ ${(5-3)}^2$ $\,=\,$ $2^2$

$\implies$ ${(5-3)}^2$ $\,=\,$ $4$

$(2). \,\,\,$ Find the value of the expansion of the square of the difference formula.

$a^2+b^2-2ab$ $\,=\,$ ${(5)}^2+{(3)}^2-2 \times 5 \times 3$

$\implies$ ${(5)}^2+{(3)}^2-2 \times 5 \times 3$ $\,=\,$ $25+9-30$

$\implies$ ${(5)}^2+{(3)}^2-2 \times 5 \times 3$ $\,=\,$ $34-30$

$\implies$ ${(5)}^2+{(3)}^2-2 \times 5 \times 3$ $\,=\,$ $4$

$(3). \,\,\,$ Now, compare results of them.

$\therefore \,\,\,\,\,\,$ ${(5-3)}^2$ $\,=\,$ ${(5)}^2+{(3)}^2-2 \times 5 \times 3$ $\,=\,$ $4$

Latest Math Topics

Jan 06, 2023

Jan 03, 2023

Jan 01, 2023

Dec 26, 2022

Dec 08, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved