Math Doubts

Log Problems for solving logarithmic equations

You have learned the logarithmic equations and it is your time to learn how to solve any logarithmic equation easily from the list of below solved logarithm problems. If you are a beginner, it’s very useful in solving logarithmic equations. It is also useful for practicing if you are an advanced learner.

$(1) \,\,\,\,\,\,$ $\log_{3}{(5x-2)}$ $-$ $2\log_{3}{\sqrt{3x+1}}$ $=$ $1-\log_{3}{4}$

$(2) \,\,\,\,\,\,$ $\dfrac{\log_{2}{(9-2^x)}}{3-x}$ $\,=\,$ $1$

$(3) \,\,\,\,\,\,$ $2\log_{2+\sqrt{3}} {(\sqrt{x^2+1}+x)}$ $\,+\,$ $\log_{2-\sqrt{3}} {(\sqrt{x^2+1}-x)}$ $\,=\,$ $3$

$(4) \,\,\,\,\,\,$ $\log_{x} 2 \times \log_{\frac{x}{16}}{2}$ $\,=\,$ $\log_{\frac{x}{64}}{2}$

$(5) \,\,\,\,\,\,$ $2\log_{x}{a}$ $+$ $\log_{ax}{a}$ $+$ $3\log_{a^2x}{a}$ $\,=\,$ $0$

$(6) \,\,\,\,\,\,$ $x+\log{(1+2^x)}$ $\,=\,$ $x\log{5}$ $+$ $\log{6}$

$(7) \,\,\,\,\,\,$ $x^{(\log_{2}{x})+4} \,=\, 32$

$(8) \,\,\,\,\,\,$ $x^{(\log_{2}{x})+4} \,=\, 32$

$(9) \,\,\,\,\,\,$ $\log_{5-x}{(x^2 -2x+65)}$ $\,=\,$ $2$

$(10) \,\,\,\,\,\,$ $\log_{5}{x}$ $+$ $\log_{x}{5}$ $\,=\,$ $\dfrac{5}{2}$

$(11) \,\,\,\,\,\,$ $\dfrac{x}{y}$ $+$ $\dfrac{y}{x}$ If $\log \Bigg[\dfrac{x+y}{3}\Bigg]$ $\,=\,$ $\dfrac{1}{2} (\log x + \log y)$

$(12) \,\,\,\,\,\,$ $\dfrac{\log(\sqrt{x+1}+1)}{\log \sqrt[3]{x-40}}$ $\,=\,$ $3$

$(13) \,\,\,\,\,\,$ $\log_{10} \Big[98$ $+$ $\sqrt{x^2-12x+36}\Big]$ $\,=\,$ $2$

$(14) \,\,\,\,\,\,$ $\log_{2}{x}$ $+$ $\log_{4}{x}$ $+$ $\log_{16}{x}$ $\,=\,$ $\dfrac{21}{4}$

$(15) \,\,\,\,\,\,$ $\log{7}$ $+$ $\log{(3x-2)}$ $\,=\,$ $\log{(x+3)}+1$

Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more