$x$ is a variable and the sum of logarithm of $x$ to base $2$ and number $4$ become an exponent to the literal $x$. The entire functional value is equal to $32$. The exponential logarithmic equation can be solved to find the value of $x$.

Express this exponential form equation in logarithmic form by using the fundamental relation between logarithmic and exponential functions.

$\implies$ $\large \log_{2} x$ $+ 4 = \large \log_{x} \normalsize 32$

$\implies 4 = \large \log_{x} \normalsize 32 -\large \log_{2} x$

$\implies \large \log_{x} \normalsize 32 -\large \log_{2} x \normalsize = 4$

$\implies \large \log_{x} \normalsize 2^5 -\large \log_{2} x \normalsize = 4$

Use the power rule of logarithms to write the first logarithmic term in simple form.

$\implies 5 \times \large \log_{x} \normalsize 2 -\large \log_{2} x \normalsize = 4$

$\implies 5 \large \log_{x} \normalsize 2 -\large \log_{2} x \normalsize = 4$

Remember this logarithmic equation and it is solved in two different methods to get the value of $x$. Use change of base rule of logarithms to transform either $\large \log_{x} \normalsize 2$ as $\large \log_{2} x$ or vice-versa.

$\implies 5 \large \log_{x} \normalsize 2 -\large \log_{2} x \normalsize = 4$

In this method, express $\large \log_{x} \normalsize 2$ in its reciprocal form by using base changing rule of logarithms.

$\implies 5 \times \large \dfrac{1}{\log_{2} x} -\log_{2} x \normalsize = 4$

$\implies \large \dfrac{\normalsize 5}{\log_{2} x} -\log_{2} x \normalsize = 4$

Take $\large \log_{2} x \normalsize = y$ and transform this logarithmic equation in terms of $y$.

$\implies \dfrac{5}{y} -y = 4$

$\implies \dfrac{5-y^2}{y} = 4$

$\implies 5- y^2= 4y$

$\implies 5= y^2 + 4y$

$\implies y^2 + 4y = 5$

$\implies y^2 + 4y -5 = 0$

It is a quadratic equation and it can be solved by the factoring method.

$\implies y^2 + 5y -y -5 \times 1 = 0$

$\implies y(y+ 5)-1(y+5) = 0$

$\implies (y-1)(y+5) = 0$

$\therefore y = 1$ and $y = -5$

But the variable $y = \large \log_{2} x$ as per our assumption in this method.

Therefore, $\large \log_{2} x \normalsize = 1$ and $\large \log_{2} x \normalsize = -5$

Now, express, each logarithmic function in exponential notation.

$\implies x = 2^1$ and $x = 2^{-5}$

$\implies x = 2$ and $x = \dfrac{1}{2^5}$

$\therefore \,\,\,\,\,\, x = 2$ and $x = \dfrac{1}{32}$

Therefore, it is the required solution of this problem. The literal $x$ has two values and they are $2$ and $\dfrac{1}{32}$.

Come back to our logarithmic equation, $5 \large \log_{x} \normalsize 2 -\large \log_{2} x \normalsize = 4$

Now, express $\large \log_{2} \normalsize x$ in its reciprocal form by using base changing rule of logarithms.

$\implies 5 \large \log_{x} \normalsize 2 -\dfrac{1}{\large \log_{x} \normalsize 2} \normalsize = 4$

Now, assume $\large \log_{x} \normalsize 2 = z$.

$\implies 5z -\dfrac{1}{z} = 4$

$\implies \dfrac{5z^2-1}{z} = 4$

$\implies 5z^2-1 = 4z$

$\implies 5z^2-4z-1 = 0$

It is a quadratic equation and solve it by quadratic formula method.

$z = \dfrac{-(-4) \pm \sqrt{{(-4)}^2 -4 \times 5 \times (-1)}}{2 \times 5}$

$\implies z = \dfrac{4 \pm \sqrt{16+20}}{10}$

$\implies z = \dfrac{4 \pm \sqrt{36}}{10}$

$\implies z = \dfrac{4 \pm 6}{10}$

$\implies z = \dfrac{4+6}{10}$ and $z = \dfrac{4-6}{10}$

$\implies z = \dfrac{10}{10}$ and $z = \dfrac{-2}{10}$

$\require{cancel} \implies z = \dfrac{\cancel{10}}{\cancel{10}}$ and $z = \dfrac{\cancel{-2}}{\cancel{10}}$

$\therefore \,\,\,\,\,\, z = 1$ and $z = \dfrac{-1}{5}$

Now replace $z$ by its actual value and solve the each solution to obtain the answer for this problem.

$\implies \large \log_{x} \normalsize 2 = 1$ and $\large \log_{x} \normalsize 2 = \dfrac{-1}{5}$

$\implies 2 = x^1$ and $2 = x^{\frac{-1}{5}}$

$\implies 2 = x$ and $2 = \dfrac{1}{x^{\frac{1}{5}}}$

$\implies x = 2$ and $x^{\frac{1}{5}} = \dfrac{1}{2}$

$\implies x = 2$ and $x = {\Big(\dfrac{1}{2}\Big)}^5$

$\implies x = 2$ and $x = \dfrac{1}{2^5}$

$\therefore \,\,\,\,\,\, x = 2$ and $x = \dfrac{1}{32}$

Latest Math Topics

Latest Math Problems

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved