Math Doubts

Sum to Product identity of Sine functions

Formula

$\sin{\alpha}+\sin{\beta}$ $\,=\,$ $2\sin{\Big(\dfrac{\alpha+\beta}{2}\Big)}\cos{\Big(\dfrac{\alpha-\beta}{2}\Big)}$

An identity that expresses the transformation of sum of sine functions into product form is called the sum to product identity of sine functions.

Introduction

Let $\alpha$ and $\beta$ be two angles of right triangles. The sine functions with the two angles are written as $\sin{\alpha}$ and $\sin{\beta}$ mathematically. The sum of the two sine functions is written mathematically in the following form.

$\sin{\alpha}+\sin{\beta}$

The sum of sine functions can be transformed into the product of the trigonometric functions as follows.

$\implies$ $\sin{\alpha}+\sin{\beta}$ $\,=\,$ $2\sin{\Big(\dfrac{\alpha+\beta}{2}\Big)}\cos{\Big(\dfrac{\alpha-\beta}{2}\Big)}$

Other forms

The sum to product transformation rule of sin functions is popular written in two forms.

$(1). \,\,\,$ $\sin{x}+\sin{y}$ $\,=\,$ $2\sin{\Big(\dfrac{x+y}{2}\Big)}\cos{\Big(\dfrac{x-y}{2}\Big)}$

$(2). \,\,\,$ $\sin{C}+\sin{D}$ $\,=\,$ $2\sin{\Big(\dfrac{C+D}{2}\Big)}\cos{\Big(\dfrac{C-D}{2}\Big)}$

In the same way, you can write the sum to product transformation formula of sine functions in terms of any two angles.

Proof

Learn how to prove the sum to product transformation identity of sine functions in trigonometry.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved