A trigonometric identity that expresses the transformation of sum of the trigonometric functions into the product form of trigonometric functions is called the sum to product identity.

In trigonometry, there are two types of sum to product transformation identities and they are used as formulas in mathematics. Now, let’s learn the sum to product trigonometric identities with proofs.

$\sin{\alpha}+\sin{\beta}$ $\,=\,$ $2\sin{\Bigg(\dfrac{\alpha+\beta}{2}\Bigg)}\cos{\Bigg(\dfrac{\alpha-\beta}{2}\Bigg)}$

The sum of sine functions can be transformed into the product of the sine and cosine functions. It is called the sum to product transformation identity of the sine functions.

The sum to product identity of sine functions is also written in the following two forms popularly.

$(1). \,\,\,$ $\sin{x}+\sin{y}$ $\,=\,$ $2\sin{\Bigg(\dfrac{x+y}{2}\Bigg)}\cos{\Bigg(\dfrac{x-y}{2}\Bigg)}$

$(2). \,\,\,$ $\sin{C}+\sin{D}$ $\,=\,$ $2\sin{\Bigg(\dfrac{C+D}{2}\Bigg)}\cos{\Bigg(\dfrac{C-D}{2}\Bigg)}$

$\cos{\alpha}+\cos{\beta}$ $\,=\,$ $2\cos{\Bigg(\dfrac{\alpha+\beta}{2}\Bigg)}\cos{\Bigg(\dfrac{\alpha-\beta}{2}\Bigg)}$

The sum of cosine functions can be transformed into the product of the cosine functions. It is called the sum to product transformation identity of the cosine functions.

The sum to product identity of cosine functions is also written in the following two forms popularly.

$(1). \,\,\,$ $\cos{x}+\cos{y}$ $\,=\,$ $2\cos{\Bigg(\dfrac{x+y}{2}\Bigg)}\cos{\Bigg(\dfrac{x-y}{2}\Bigg)}$

$(2). \,\,\,$ $\cos{C}+\cos{D}$ $\,=\,$ $2\cos{\Bigg(\dfrac{C+D}{2}\Bigg)}\cos{\Bigg(\dfrac{C-D}{2}\Bigg)}$

Latest Math Topics

Jul 24, 2022

Jul 15, 2022

Latest Math Problems

Sep 30, 2022

Jul 29, 2022

Jul 17, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved