$\sin{(A+B)}$ $+$ $\sin{(A-B)}$ $\,=\,$ $2\sin{A}\cos{B}$

$A$ and $B$ are two angles. Sine of sum of angles is $\sin{(A+B)}$ and sine of difference of angles is $\sin{(A-B)}$. The sum of them is $\sin{(A+B)}$ $+$ $\sin{(A-B)}$.

According to angle sum and angle difference identities, $\sin{(A+B)}$ and $\sin{(A-B)}$ can be expanded in terms of sin and cos of angles.

$(1) \,\,\,\,\,\,$ $\sin{(A+B)}$ $\,=\,$ $\sin{A}\cos{B}$ $+$ $\cos{A}\sin{B}$

$(2) \,\,\,\,\,\,$ $\sin{(A-B)}$ $\,=\,$ $\sin{A}\cos{B}$ $-$ $\cos{A}\sin{B}$

Now, add both trigonometric equations for obtaining sum of them.

$\implies$ $\sin{(A+B)}$ $+$ $\sin{(A-B)}$ $\,=\,$ $\sin{A}\cos{B}$ $+$ $\cos{A}\sin{B}$ $+$ $\sin{A}\cos{B}$ $-$ $\cos{A}\sin{B}$

Finally, simplify the trigonometric equation and obtain the sum of sine of sum of angles and sine of difference of angles in product form of the trigonometric functions.

$\implies$ $\sin{(A+B)}$ $+$ $\sin{(A-B)}$ $\,=\,$ $\sin{A}\cos{B}$ $+$ $\sin{A}\cos{B}$ $+$ $\cos{A}\sin{B}$ $-$ $\cos{A}\sin{B}$

$\implies$ $\sin{(A+B)}$ $+$ $\sin{(A-B)}$ $\,=\,$ $2\sin{A}\cos{B}$ $+$ $\require{cancel} \cancel{\cos{A}\sin{B}}$ $-$ $\require{cancel} \cancel{\cos{A}\sin{B}}$

$\,\,\, \therefore \,\,\,\,\,\,$ $\sin{(A+B)}$ $+$ $\sin{(A-B)}$ $\,=\,$ $2\sin{A}\cos{B}$

Therefore, it is proved that the sum of sin functions is written as the product of the trigonometric functions sine and cosine. Hence, it is called as sum to product identity in trigonometry.

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.