A matrix that consists of equal diagonal elements and zeros as non-diagonal entries is called a scalar matrix.

In a special case, each entry in the main diagonal (or leading diagonal) can be equal and the remaining non-diagonal elements can be zeros in the matrix.

The following matrix is an example for this case.

$M$ $\,=\,$ $\begin{bmatrix} c & 0 & 0 & \cdots & 0\\ 0 & c & 0 & \cdots & 0\\ 0 & 0 & c & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & & \cdots & c\\ \end{bmatrix} $

In English language, the word “scalar” is used to express “of a quantity”. Hence, the word “scalar” is added before the word “matrix” for expressing the equality of entries in the matrix.

Therefore, a scalar matrix is a matrix in which the diagonal elements are equal and non-zeros but the non-diagonal elements are zeros.

A scalar matrix is basically a square matrix and also a diagonal matrix due to the equality property of the entries.

$e_{11}$ $\,=\,$ $e_{22}$ $\,=\,$ $e_{33}$ $\,=\,$ $\cdots$ $\,=\,$ $e_{mm}$

When the matrix $M$ is simply written as $\begin{bmatrix} e_{ij}\\ \end{bmatrix}$, there are two conditions for calling a matrix as a scalar matrix.

- $e_{ij} \,=\, 0$ for all $i \,\ne\, j$
- $e_{ij} \,=\, c$ for all $i \,=\, j$ and $c \,\ne\, 0$

The below three examples are some best examples for a scalar matrix.

$A$ $\,=\,$ $\begin{bmatrix} 6 & 0 \\ 0 & 6 \\ \end{bmatrix} $

It is a square matrix of the order $2$. In this matrix, the diagonal elements are equal and each diagonal element is $6$, and the remaining elements are zero. Hence, the matrix $A$ is called a scalar matrix.

$B$ $\,=\,$ $\begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1\\ \end{bmatrix} $

The matrix $B$ is a square matrix of the order $3 \times 3$. In this matrix, the diagonal entries are non-zero elements and each entry is $-1$, and the non-diagonal elements are zero. Therefore, the matrix $B$ is an example matrix for a scalar matrix.

$C$ $\,=\,$ $\begin{bmatrix} 2 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{bmatrix} $

The matrix $C$ is a scalar matrix of the order $4$ because the elements in the main diagonal (or principal diagonal) are non-zeros and each element in the leading diagonal is $2$ but the remaining elements are zero.

Latest Math Topics

Jul 24, 2022

Jul 15, 2022

Latest Math Problems

Sep 30, 2022

Jul 29, 2022

Jul 17, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved