$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n} } \normalsize \,=\, \Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)} \normalsize \Big)^{\normalsize \displaystyle n}$

The limit of power of a function is equal to the power of limit of the function. It is called the power rule of limits.

$x$ is a variable and $f(x)$ is a function in terms of $x$. The literals $n$ and $a$ are constants. The function $f(x)$ and a constant $n$ formed a power function $\Big(f(x)\Big)^{\displaystyle n}$. The limit of the power function $\Big(f(x)\Big)^{\displaystyle n}$ as the input $x$ approaches $a$ is written in mathematics in the following form.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n}}$

The limit of $n$-th power of function $f(x)$ as $x$ tends to $a$ is equal to the $n$-th power of the limit of the function $f(x)$.

$\implies$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n} } \normalsize \,=\, \Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)} \normalsize \Big)^{\normalsize \displaystyle n}$

$(1) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {(x+6)}^2}$ $\,=\,$ $\Bigg[\displaystyle \large \lim_{x \,\to\, 0} \, {\normalsize {(x+6)}\Bigg]}^2$

$(2) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 2}{\normalsize {(x^2+3x+4)}^5}$ $\,=\,$ $\Bigg[\displaystyle \large \lim_{x \,\to\, 2} \, {\normalsize {(x^2+3x+4)}\Bigg]}^5$

$(3) \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, \infty}{\normalsize {\Bigg(7+\dfrac{2}{x}\Bigg)}^{123}}$ $\,=\,$ $\Bigg[\displaystyle \large \lim_{x \,\to\, \infty} \, {\normalsize {\Bigg(7+\dfrac{2}{x}\Bigg)}\Bigg]}^{123}$

Learn how to derive the power rule of limits in mathematical form in calculus.

Latest Math Topics

Aug 31, 2024

Aug 07, 2024

Jul 24, 2024

Dec 13, 2023

Latest Math Problems

Oct 22, 2024

Oct 17, 2024

Sep 04, 2024

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved