$x$ is a variable, $a$ and $n$ are constants. The function in terms of $x$ is written as $f(x)$. It formed a power function with a constant $n$ and the power function is written in mathematical form as $\Big(f(x)\Big)^{\displaystyle n}$. The limit of the $n$-th power of a function $f(x)$ as $x$ approaches $a$ is written in calculus in the following mathematical form.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n}}$

The limit of the power function can be evaluated by the power rule of limits and it can be derived mathematically in calculus in three simple steps.

Write, the limit of a function $f(x)$ as $x$ approaches $a$ in mathematical form.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$

Take, the limit of a function $f(x)$ as $x$ approaches $a$ is equal to $L$.

$\implies$ $L$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$

Now, find the limit of the function by the direct substitution method.

$\implies$ $L \,=\, f(a)$

Express the limit of a power function $\Big(f(x)\Big)^{\displaystyle n}$ as $x$ tends to $a$ in mathematical form.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n}}$

Now, evaluate the limit of the power function as $x$ approaches $a$ by direct substitution method.

$\implies$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n}}$ $\,=\,$ $\Big(f(a)\Big)^{\displaystyle n}$

In the first step, the value of $f(a)$ is $L$.

$\implies$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n}}$ $\,=\,$ $\Big(L\Big)^{\displaystyle n}$

But, it is taken that $L$ is equal to the $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$

$\,\,\, \therefore \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n} } \normalsize \,=\, \Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)} \normalsize \Big)^{\normalsize \displaystyle n}$

Therefore, it is proved that the limit of a power function is equal to the power of the limit of the function. This property is called the power rule of limits.

Latest Math Topics

Jul 20, 2023

Jun 26, 2023

Jun 23, 2023

Latest Math Problems

Jul 01, 2023

Jun 25, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved