$x$ is a variable, $a$ and $n$ are constants. The function in terms of $x$ is written as $f(x)$. It formed a power function with a constant $n$ and the power function is written in mathematical form as $\Big(f(x)\Big)^{\displaystyle n}$. The limit of the $n$-th power of a function $f(x)$ as $x$ approaches $a$ is written in calculus in the following mathematical form.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n}}$

The limit of the power function can be evaluated by the power rule of limits and it can be derived mathematically in calculus in three simple steps.

Write, the limit of a function $f(x)$ as $x$ approaches $a$ in mathematical form.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$

Take, the limit of a function $f(x)$ as $x$ approaches $a$ is equal to $L$.

$\implies$ $L$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$

Now, find the limit of the function by the direct substitution method.

$\implies$ $L \,=\, f(a)$

Express the limit of a power function $\Big(f(x)\Big)^{\displaystyle n}$ as $x$ tends to $a$ in mathematical form.

$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n}}$

Now, evaluate the limit of the power function as $x$ approaches $a$ by direct substitution method.

$\implies$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n}}$ $\,=\,$ $\Big(f(a)\Big)^{\displaystyle n}$

In the first step, the value of $f(a)$ is $L$.

$\implies$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n}}$ $\,=\,$ $\Big(L\Big)^{\displaystyle n}$

But, it is taken that $L$ is equal to the $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$

$\,\,\, \therefore \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n} } \normalsize \,=\, \Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)} \normalsize \Big)^{\normalsize \displaystyle n}$

Therefore, it is proved that the limit of a power function is equal to the power of the limit of the function. This property is called the power rule of limits.

Latest Math Topics

Apr 18, 2022

Apr 14, 2022

Apr 05, 2022

Mar 18, 2022

Mar 05, 2022

Latest Math Problems

Apr 06, 2022

Mar 22, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved