$x$ is a variable, $a$ and $n$ are constants. The function in terms of $x$ is written as $f(x)$. It formed a power function with a constant $n$ and the power function is written in mathematical form as $\Big(f(x)\Big)^{\displaystyle n}$. The limit of the $n$-th power of a function $f(x)$ as $x$ approaches $a$ is written in calculus in the following mathematical form.
$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n}}$
The limit of the power function can be evaluated by the power rule of limits and it can be derived mathematically in calculus in three simple steps.
Write, the limit of a function $f(x)$ as $x$ approaches $a$ in mathematical form.
$\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$
Take, the limit of a function $f(x)$ as $x$ approaches $a$ is equal to $L$.
$\implies$ $L$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$
Now, find the limit of the function by the direct substitution method.
$\implies$ $L \,=\, f(a)$
Express the limit of a power function $\Big(f(x)\Big)^{\displaystyle n}$ as $x$ tends to $a$ in mathematical form.
$\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n}}$
Now, evaluate the limit of the power function as $x$ approaches $a$ by direct substitution method.
$\implies$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n}}$ $\,=\,$ $\Big(f(a)\Big)^{\displaystyle n}$
In the first step, the value of $f(a)$ is $L$.
$\implies$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n}}$ $\,=\,$ $\Big(L\Big)^{\displaystyle n}$
But, it is taken that $L$ is equal to the $\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)}$
$\,\,\, \therefore \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize \Big(f(x)\Big)^{\displaystyle n} } \normalsize \,=\, \Big(\displaystyle \large \lim_{x \,\to\, a}{\normalsize f(x)} \normalsize \Big)^{\normalsize \displaystyle n}$
Therefore, it is proved that the limit of a power function is equal to the power of the limit of the function. This property is called the power rule of limits.
A best free mathematics education website that helps students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
A math help place with list of solved problems with answers and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved