Math Doubts

Proof of Negative Power Rule

$b$, $m$ and $n$ are literals and they represent constants. The three constants form two exponential terms $b^{\displaystyle \, m}$ and $b^{\displaystyle \, n}$.

$(1) \,\,\,\,\,\,$ $b^{\displaystyle \, m}$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle m \, factors}$

$(2) \,\,\,\,\,\,$ $b^{\displaystyle \, n}$ $\,=\,$ $\underbrace{b \times b \times b \times \ldots \times b}_{\displaystyle n \, factors}$

Now, let’s derive the negative exponent rule by using these basic steps.

Find the Quotient of Exponents

Divide the exponential term $b^{\displaystyle \, m}$ by $b^{\displaystyle \, n}$ to evaluate their quotient. It is evaluated by using the quotient rule of exponents with same base.

$\dfrac{b^{\displaystyle \, m}}{b^{\displaystyle \, n}} \,=\, b^{\displaystyle \, m-n}$

Possibility of Negative exponent

The total number of factors in exponential term $b^{\displaystyle \, m}$ is equal to zero. It means $m = 0$

$\implies$ $\dfrac{b^0}{b^{\displaystyle \, n}} \,=\, b^{\displaystyle \, 0-n}$

$\implies$ $\dfrac{b^0}{b^{\displaystyle \, n}} \,=\, b^{\displaystyle \, -n}$

Power Rule of Negative exponent

According to zero power rule, the $b$ raised to the power of zero is one.

$\implies$ $\dfrac{1}{b^{\displaystyle \, n}} \,=\, b^{\displaystyle \, -n}$

$\,\,\, \therefore \,\,\,\,\,\,$ $b^{\displaystyle \, -n} \,=\, \dfrac{1}{b^{\displaystyle \, n}}$

Therefore, it is proved that value of negative exponent with a base is equal to the reciprocal of the exponent with same base.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved