# Even Odd identities

There are six negative angle trigonometric identities in trigonometry and they are used as formulas when trigonometric functions appear with negative angles. The negative angle identities are helpful to transform any trigonometric function which contains negative angle as same trigonometric ratio with positive angle.

$(1) \,\,\,\,\,\,$ $\sin{(-\theta)} \,=\, -\sin{\theta}$

Sine of negative angle is equal to negative sine of angle.

$(2) \,\,\,\,\,\,$ $\cos{(-\theta)} \,=\, \cos{\theta}$

Cosine of negative angle is equal to cosine of angle.

$(3) \,\,\,\,\,\,$ $\tan{(-\theta)} \,=\, -\tan{\theta}$

Tangent of negative angle is equal to negative tangent of angle.

$(4) \,\,\,\,\,\,$ $\cot{(-\theta)} \,=\, -\cot{\theta}$

Cotangent of negative angle is equal to negative cotangent of angle.

$(5) \,\,\,\,\,\,$ $\sec{(-\theta)} \,=\, \sec{\theta}$

Secant of negative angle is equal to secant of angle.

$(6) \,\,\,\,\,\,$ $\csc{(-\theta)} \,=\, -\csc{\theta}$

Cotangent of negative angle is equal to negative cotangent of angle.

A best free mathematics education website that helps students, teachers and researchers.

###### Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

###### Maths Problems

A math help place with list of solved problems with answers and worksheets on every concept for your practice.

Learn solutions

###### Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.