Math Doubts

Negative angle identities

There are six negative angle trigonometric identities in trigonometry and they are used as formulas when trigonometric functions appear with negative angles. The negative angle identities are helpful to transform any trigonometric function which contains negative angle as same trigonometric ratio with positive angle.

$(1) \,\,\,\,\,\,$ $\sin{(-\theta)} \,=\, -\sin{\theta}$

Sine of negative angle is equal to negative sine of angle.

$(2) \,\,\,\,\,\,$ $\cos{(-\theta)} \,=\, \cos{\theta}$

Cosine of negative angle is equal to cosine of angle.

$(3) \,\,\,\,\,\,$ $\tan{(-\theta)} \,=\, -\tan{\theta}$

Tangent of negative angle is equal to negative tangent of angle.

$(4) \,\,\,\,\,\,$ $\cot{(-\theta)} \,=\, -\cot{\theta}$

Cotangent of negative angle is equal to negative cotangent of angle.

$(5) \,\,\,\,\,\,$ $\sec{(-\theta)} \,=\, \sec{\theta}$

Secant of negative angle is equal to secant of angle.

$(6) \,\,\,\,\,\,$ $\csc{(-\theta)} \,=\, -\csc{\theta}$

Cotangent of negative angle is equal to negative cotangent of angle.



Follow us
Email subscription
Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Mobile App for Android users Math Doubts Android App
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more