Math Doubts

Point slope form of a Line

Equation

$y-y_{1} \,=\, m(x-x_{1})$

It is an equation of a straight line when a straight line intercepts $x$-axis at a point with some slope.

Proof

point-slope form straight line

$P(x_{1}, y_{1})$ is a point on straight line and $Q(x, y)$ is any point on the same straight line. The straight line $\small \overleftrightarrow{PQ}$ has some slope in Cartesian coordinate system.

The slope of the line is denoted by $m$ in geometric system.

Draw a parallel line to horizontal axis from point $P$ and also draw a perpendicular line towards $x$-axis from point $Q$. The two lines are intersected at point $R$. Thus, a right triangle $\Delta RPQ$ is formed geometrically.

The angle of the $\Delta RPQ$ is theta ($\theta$) and then calculate the slope of the straight line.

point-slope form of straight line

$m \,=\, \tan{\theta}$

Evaluate tan of angle theta to express slope of the line in terms of coordinates of the line.

$\implies m \,=\, \dfrac{QR}{PR}$

$\implies m \,=\, \dfrac{OQ-OR}{OR-OP}$

$\implies m \,=\, \dfrac{y-y_{1}}{x-x_{1}}$

$\implies m(x-x_{1}) \,=\, y-y_{1}$

$\,\,\, \therefore \,\,\,\,\,\, y-y_{1} \,=\, m(x-x_{1})$

It is a linear equation and it is in terms of a point and slope. So, the equation of straight line is called as point-slope form equation of a straight line.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved