Math Doubts

Integral rule for Reciprocal of Linear expression

Formula

$\displaystyle \int{\dfrac{1}{ax \pm b} \,}dx \,=\, \dfrac{1}{a}\log_e{|ax \pm b|}+c$

Introduction

Let $a$ and $b$ represent constants, and $x$ represents a variable. The three liters form linear expression in one variable possibly in the following two ways.

  1. $ax+b$
  2. $ax-b$

Hence, the linear expression in one variable simply written in mathematical form as $ax \pm b$.

The indefinite integral for the reciprocal of the linear expression in one variable $ax\pm b$ with respect to $x$ is expressed mathematically as follows.

$\implies$ $\displaystyle \int{\dfrac{1}{ax \pm b} \,}dx$

The indefinite integral for the multiplicative inverse of the linear expression in one variable with respect to $x$ is equal to the product of the reciprocal of the coefficient of variable and the natural logarithm of the linear expression in one variable and the integral constant.

$(1) \,\,\,$ $\displaystyle \int{\dfrac{1}{ax+b} \,}dx \,=\, \dfrac{1}{a}\ln{|ax+b|}+c$

$(2) \,\,\,$ $\displaystyle \int{\dfrac{1}{ax-b} \,}dx \,=\, \dfrac{1}{a}\ln{|ax-b|}+c$

Example

Evaluate $\displaystyle \int{\dfrac{1}{3x+2} \,}dx$

In this simple problem, $a = 3$ and $b = 2$.

$\therefore \,\,\,\,\,\,$ $\displaystyle \int{\dfrac{1}{3x+2} \,}dx \,=\, \dfrac{1}{3}\ln{|3x+2|}+c$

Proof

Learn how to derive the indefinite integral rule for the multiplicative inverse of the linear expression in one variable.

Math Doubts
Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more