Let $a$ and $b$ represent constants, and $x$ represents a variable. There are two possible ways to form the linear expressions in one variable.
The indefinite integral of the multiplicative inverse of the linear expression in one variable with respect to $x$ is written in calculus as follows.
$\displaystyle \int{\dfrac{1}{ax \pm b} \,}dx$
Now, let us derive the integral rule for the reciprocal of linear expression in one variable mathematically.
Let $u = ax\pm b$, then differentiate the equation with respect to $x$.
$\implies$ $\dfrac{du}{dx} \,=\, \dfrac{d}{dx}{\, (ax \pm b)}$
$\implies$ $\dfrac{du}{dx} \,=\, \dfrac{d}{dx}{\, (ax)} \pm \dfrac{d}{dx}{\, (b)}$
$\implies$ $\dfrac{du}{dx} \,=\, \dfrac{d}{dx}{\, (a \times x)} \pm 0$
$\implies$ $\dfrac{du}{dx} \,=\, a \times \dfrac{d}{dx}{\, (x)}$
$\implies$ $\dfrac{du}{dx} \,=\, a \times 1$
$\implies$ $\dfrac{du}{dx} \,=\, a$
$\implies$ $\dfrac{du}{a} \,=\, dx$
$\implies$ $dx \,=\, \dfrac{du}{a}$
$\implies$ $\displaystyle \int{\dfrac{1}{ax \pm b} \,}dx$ $\,=\,$ $\displaystyle \int{\dfrac{1}{u} \,}\Big(\dfrac{du}{a}\Big)$
In the above step, we have successfully converted the integral of rational expression in terms of $u$ from $x$. Now, let’s simplify this indefinite integral expression.
$\implies$ $\displaystyle \int{\dfrac{1}{u} \,}\Big(\dfrac{du}{a}\Big)$ $\,=\,$ $\displaystyle \int{\dfrac{1}{u} \times \dfrac{1}{a} \times \,}du$
$=\,\,\,$ $\displaystyle \int{\dfrac{1}{a} \times \dfrac{1}{u} \,}du$
$=\,\,\,$ $\displaystyle \dfrac{1}{a} \times \int{ \dfrac{1}{u} \,}du$
Now, evaluate the indefinite integral of the reciprocal of a variable $u$ with respect to $u$ by the reciprocal rule of integration.
$\implies$ $\displaystyle \dfrac{1}{a} \times \int{ \dfrac{1}{u} \,}du$ $\,=\,$ $\dfrac{1}{a} \times \Big(\log_e{|u|}+c_1\Big)$
$=\,\,\,$ $\dfrac{1}{a} \times \Big(\log_e{|ax\pm b|}+c_1\Big)$
$=\,\,\,$ $\dfrac{1}{a} \times \log_e{|ax\pm b|}+\dfrac{1}{a} \times c_1$
$=\,\,\,$ $\dfrac{1}{a} \times \log_e{|ax\pm b|}+\dfrac{1 \times c_1}{a}$
$=\,\,\,$ $\dfrac{1}{a} \times \log_e{|ax\pm b|}+\dfrac{c_1}{a}$
$=\,\,\,$ $\dfrac{1}{a}\log_e{|ax\pm b|}+c$
$=\,\,\,$ $\dfrac{1}{a}\ln{|ax\pm b|}+c$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the maths problems in different methods with understandable steps.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved