Math Doubts

Proof of Integral rule for Reciprocal of Linear expression

Let $a$ and $b$ represent constants, and $x$ represents a variable. There are two possible ways to form the linear expressions in one variable.

  1. $ax+b$
  2. $ax-b$

The indefinite integral of the multiplicative inverse of the linear expression in one variable with respect to $x$ is written in calculus as follows.

$\displaystyle \int{\dfrac{1}{ax \pm b} \,}dx$

Now, let us derive the integral rule for the reciprocal of linear expression in one variable mathematically.

Transform Linear expression by differentiation

Let $u = ax\pm b$, then differentiate the equation with respect to $x$.

$\implies$ $\dfrac{du}{dx} \,=\, \dfrac{d}{dx}{\, (ax \pm b)}$

$\implies$ $\dfrac{du}{dx} \,=\, \dfrac{d}{dx}{\, (ax)} \pm \dfrac{d}{dx}{\, (b)}$

$\implies$ $\dfrac{du}{dx} \,=\, \dfrac{d}{dx}{\, (a \times x)} \pm 0$

$\implies$ $\dfrac{du}{dx} \,=\, a \times \dfrac{d}{dx}{\, (x)}$

$\implies$ $\dfrac{du}{dx} \,=\, a \times 1$

$\implies$ $\dfrac{du}{dx} \,=\, a$

$\implies$ $\dfrac{du}{a} \,=\, dx$

$\implies$ $dx \,=\, \dfrac{du}{a}$

$\implies$ $\displaystyle \int{\dfrac{1}{ax \pm b} \,}dx$ $\,=\,$ $\displaystyle \int{\dfrac{1}{u} \,}\Big(\dfrac{du}{a}\Big)$

Simplify the Indefinite integral expression

In the above step, we have successfully converted the integral of rational expression in terms of $u$ from $x$. Now, let’s simplify this indefinite integral expression.

$\implies$ $\displaystyle \int{\dfrac{1}{u} \,}\Big(\dfrac{du}{a}\Big)$ $\,=\,$ $\displaystyle \int{\dfrac{1}{u} \times \dfrac{1}{a} \times \,}du$

$=\,\,\,$ $\displaystyle \int{\dfrac{1}{a} \times \dfrac{1}{u} \,}du$

$=\,\,\,$ $\displaystyle \dfrac{1}{a} \times \int{ \dfrac{1}{u} \,}du$

Evaluate the integration of Rational expression

Now, evaluate the indefinite integral of the reciprocal of a variable $u$ with respect to $u$ by the reciprocal rule of integration.

$\implies$ $\displaystyle \dfrac{1}{a} \times \int{ \dfrac{1}{u} \,}du$ $\,=\,$ $\dfrac{1}{a} \times \Big(\log_e{|u|}+c_1\Big)$

$=\,\,\,$ $\dfrac{1}{a} \times \Big(\log_e{|ax\pm b|}+c_1\Big)$

$=\,\,\,$ $\dfrac{1}{a} \times \log_e{|ax\pm b|}+\dfrac{1}{a} \times c_1$

$=\,\,\,$ $\dfrac{1}{a} \times \log_e{|ax\pm b|}+\dfrac{1 \times c_1}{a}$

$=\,\,\,$ $\dfrac{1}{a} \times \log_e{|ax\pm b|}+\dfrac{c_1}{a}$

$=\,\,\,$ $\dfrac{1}{a}\log_e{|ax\pm b|}+c$

$=\,\,\,$ $\dfrac{1}{a}\ln{|ax\pm b|}+c$

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved