Math Doubts

Proof of Integral of cosx formula

$x$ is a variable, which represents an angle of a right triangle and the cosine function is written as $\cos{x}$ in trigonometry. The indefinite integral of $\cos{x}$ with respect to $x$ is mathematically written in the following mathematical form.

$\displaystyle \int{\cos{x} \,}dx$

Derivative of sin function

Write the derivative of sin function with respect to $x$ formula for writing the differentiation of sine function in mathematical form.

$\dfrac{d}{dx}{\, \sin{x}} \,=\, \cos{x}$

Inclusion of an Arbitrary constant

As per differential calculus, the derivative of a constant is always zero. So, it does not change the differentiation even an arbitrary constant ($c$) is added to the trigonometric function $\sin{x}$.

$\implies$ $\dfrac{d}{dx}{(\sin{x}+c)} \,=\, \cos{x}$

Integral of cos function

According to integral calculus, the collection of all primitives of $\cos{x}$ function is called the indefinite integral of $\cos{x}$ function and it can be expressed in the following mathematical form.

$\displaystyle \int{\cos{x} \,}dx$

Here, the primitive or an antiderivative of $\cos{x}$ function is $\sin{x}$ and the constant of integration $c$.

$\dfrac{d}{dx}{(\sin{x}+c)} = \cos{x}$ $\,\Longleftrightarrow\,$ $\displaystyle \int{\cos{x} \,}dx = \sin{x}+c$

$\therefore \,\,\,\,\,\,$ $\displaystyle \int{\cos{x} \,}dx = \sin{x}+c$

Therefore, it has proved that the indefinite integral or antiderivative of cosine function is equal to the sum of the sine function and the constant of integration.

Math Doubts
Math Doubts is a free math tutor for helping students to learn mathematics online from basics to advanced scientific level for teachers to improve their teaching skill and for researchers to share their research projects. Know more
Follow us on Social Media
Math Problems

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.

Learn more