Math Doubts

Proof of Integral of cosx formula

$x$ is a variable, which represents an angle of a right triangle and the cosine function is written as $\cos{x}$ in trigonometry. The indefinite integral of $\cos{x}$ with respect to $x$ is mathematically written in the following mathematical form.

$\displaystyle \int{\cos{x} \,}dx$

Derivative of sin function

Write the derivative of sin function with respect to $x$ formula for writing the differentiation of sine function in mathematical form.

$\dfrac{d}{dx}{\, \sin{x}} \,=\, \cos{x}$

Inclusion of an Arbitrary constant

As per differential calculus, the derivative of a constant is always zero. So, it does not change the differentiation even an arbitrary constant ($c$) is added to the trigonometric function $\sin{x}$.

$\implies$ $\dfrac{d}{dx}{(\sin{x}+c)} \,=\, \cos{x}$

Integral of cos function

According to integral calculus, the collection of all primitives of $\cos{x}$ function is called the indefinite integral of $\cos{x}$ function and it can be expressed in the following mathematical form.

$\displaystyle \int{\cos{x} \,}dx$

Here, the primitive or an antiderivative of $\cos{x}$ function is $\sin{x}$ and the constant of integration $c$.

$\dfrac{d}{dx}{(\sin{x}+c)} = \cos{x}$ $\,\Longleftrightarrow\,$ $\displaystyle \int{\cos{x} \,}dx = \sin{x}+c$

$\therefore \,\,\,\,\,\,$ $\displaystyle \int{\cos{x} \,}dx = \sin{x}+c$

Therefore, it has proved that the indefinite integral or antiderivative of cosine function is equal to the sum of the sine function and the constant of integration.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved