Math Doubts

Derivative of sinx

Formula

$\dfrac{d}{dx}{\, (\sin{x})} \,=\, \cos{x}$

The derivative or differentiation of sin function with respect to a variable is equal to cosine. So, it is read as the derivative of $\sin{x}$ with respect to $x$ is equal to $\cos{x}$.

Introduction

If $x$ is a variable, then the sine function is written as $\sin{x}$ in mathematics. The differentiation of the sin function with respect to $x$ is written mathematically as follows.

$\dfrac{d}{dx}{\, (\sin{x})}$

The derivative of $\sin{x}$ with respect to $x$ can also be expressed as $\dfrac{d{\,(\sin{x})}}{dx}$. It is also simply written as ${(\sin{x})}’$ mathematically in calculus.

Other form

The derivative of the sin function can be written in terms of any variable.

$(1) \,\,\,$ $\dfrac{d}{dm}{\, (\sin{m})} \,=\, \cos{m}$

$(2) \,\,\,$ $\dfrac{d}{dy}{\, (\sin{y})} \,=\, \cos{y}$

Proof

Learn how to derive the derivative of the sine function by first principle in differential calculus.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved