# Proof of Derivative of Logarithmic function

The derivative of logarithmic function can be derived in differential calculus from first principle. $f{(x)}$ is a function in terms of $x$ and the natural logarithm of the function $f{(x)}$ is written as $\log_{e}{f(x)}$ or $\ln{f{(x)}}$ in mathematics. The differentiation of logarithmic function with respect to $x$ is written in mathematical form as follows.

$\dfrac{d}{dx}{\, \log_{e}{f{(x)}}}$

### Express derivative of function in limiting operation

According to the definition of the derivative, the differentiation of a function with respect to a variable can be written in limiting operation form.

$\dfrac{d}{dx}{\, g{(x)}}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{g{(x+\Delta x)}-g{(x)}}{\Delta x}}$

In this case, $g{(x)} = \log_{e}{f{(x)}}$ then $g{(x+\Delta x)} = \log_{e}{f{(x+\Delta x)}}$. Now, write the derivative of the natural logarithm of a function in the form of limiting operation.

$\implies$ $\dfrac{d}{dx}{\, \log_{e}{f{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{f{(x+\Delta x)}}-\log_{e}{f{(x)}}}{\Delta x}}$

### Simplify the logarithmic function

According to differential, take $f{(x)} = y$ and $f{(x+\Delta x)} = y+\Delta y$. Now, write each function in terms of $y$.

$\implies$ $\dfrac{d}{dx}{\, \log_{e}{f{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{(y+\Delta y)}-\log_{e}{y}}{\Delta x}}$

The difference of the logarithmic terms can be combined by using quotient rule of logarithms.

$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(\dfrac{y+\Delta y}{y}\Bigg)}}{\Delta x}}$

$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(\dfrac{y}{y}+\dfrac{\Delta y}{y}\Bigg)}}{\Delta x}}$

$=\,\,\,$ $\require{cancel} \displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(\dfrac{\cancel{y}}{\cancel{y}}+\dfrac{\Delta y}{y}\Bigg)}}{\Delta x}}$

$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\Delta x}}$

The limiting operation can be evaluated by using limit rule of logarithmic function. So, try to transform it same as the standard result.

$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\Delta x \times 1}}$

$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\Delta x \times \dfrac{\dfrac{\Delta y}{y}}{\dfrac{\Delta y}{y}} }}$

$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\Delta x \times \dfrac{\Delta y}{y} \times \dfrac{y}{\Delta y} }}$

$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y} \times \Delta x \times \dfrac{y}{\Delta y} }}$

Now, factorize the function in the limiting operation.

$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \Bigg[\dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y}}}$ $\times$ $\dfrac{1}{\Delta x \times \dfrac{y}{\Delta y}} \Bigg]$

$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \Bigg[\dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y}}}$ $\times$ $\dfrac{\Delta y}{\Delta x \times y} \Bigg]$

$\implies$ $\dfrac{d}{dx}{\, \log_{e}{f{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \Bigg[\dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y}}}$ $\times$ $\dfrac{\Delta y}{\Delta x}$ $\times$ $\dfrac{1}{y}\Bigg]$

### Evaluate Limits of the multiplying functions

Use the product rule of limits to find the limit of the function by the product of their limits.

$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y}}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\Delta y}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{y}\Bigg)}$

According to concept of derivative, if the change in $x$ is infinitesimal then the change in $y$ is also infinitesimal. Therefore, $\Delta y \to 0$, if $\Delta x \to 0$.

$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{\Delta y \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y}}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\Delta y}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{y}\Bigg)}$

If $\Delta y \to 0$, then $\dfrac{\Delta y}{y} \to \dfrac{0}{y}$. Therefore, $\dfrac{\Delta y}{y} \to 0$

$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{\frac{\Delta y}{y} \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y}}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\Delta y}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{y}\Bigg)}$

Take $m = \dfrac{\Delta y}{y}$ and change the first factor in terms of $m$.

$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{m \,\to\, 0}{\normalsize \dfrac{\log_{e}{(1+m)}}{m}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\Delta y}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{y}\Bigg)}$

According to logarithmic limit rule, the limit of the first logarithmic function is one.

$=\,\,\,$ $1$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\Delta y}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{y}\Bigg)}$

$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\Delta y}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{y}\Bigg)}$

Actually, $y = f{(x)}$ and $y+\Delta y = f{(x+\Delta x)}$. Therefore, $\Delta y = f{(x+\Delta x)}-f{(x)}$. Replace them in the both factors.

$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{f{(x+\Delta x)}-f{(x)}}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{f{(x)}}\Bigg)}$

According to concept of derivative, the value of the first factor is equal to the derivative of the function $f{(x)}$ with respect to $x$. Now, evaluate the third factor by the direct substitution method. The limit of reciprocal of $f{(x)}$ as change in $x$ approaches zero is remain same due to lack of change in $x$ term in the function.

$=\,\,\,$ $\Bigg(\dfrac{d}{dx}{\, f{(x)}}\Bigg)$ $\times$ $\Bigg(\dfrac{1}{f{(x)}}\Bigg)$

$=\,\,\,$ $\Bigg(\dfrac{1}{f{(x)}}\Bigg)$ $\times$ $\Bigg(\dfrac{d}{dx}{\, f{(x)}}\Bigg)$

$\,\,\, \therefore \,\,\,\,\,\,$ $\dfrac{d}{dx}{\, \log_{e}{f{(x)}}}$ $\,=\,$ ${\dfrac{1}{f{(x)}}}{\dfrac{d}{dx}{\, f{(x)}}}$

Therefore, it is proved that the derivative of logarithm of a function with respect to variable is equal to the product of the reciprocal of the function and the derivative of the function.

Latest Math Topics
Jun 26, 2023
Jun 23, 2023

###### Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Practice now

###### Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

###### Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.