The derivative of logarithmic function can be derived in differential calculus from first principle. $f{(x)}$ is a function in terms of $x$ and the natural logarithm of the function $f{(x)}$ is written as $\log_{e}{f(x)}$ or $\ln{f{(x)}}$ in mathematics. The differentiation of logarithmic function with respect to $x$ is written in mathematical form as follows.
$\dfrac{d}{dx}{\, \log_{e}{f{(x)}}}$
According to the definition of the derivative, the differentiation of a function with respect to a variable can be written in limiting operation form.
$\dfrac{d}{dx}{\, g{(x)}}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{g{(x+\Delta x)}-g{(x)}}{\Delta x}}$
In this case, $g{(x)} = \log_{e}{f{(x)}}$ then $g{(x+\Delta x)} = \log_{e}{f{(x+\Delta x)}}$. Now, write the derivative of the natural logarithm of a function in the form of limiting operation.
$\implies$ $\dfrac{d}{dx}{\, \log_{e}{f{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{f{(x+\Delta x)}}-\log_{e}{f{(x)}}}{\Delta x}}$
According to differential, take $f{(x)} = y$ and $f{(x+\Delta x)} = y+\Delta y$. Now, write each function in terms of $y$.
$\implies$ $\dfrac{d}{dx}{\, \log_{e}{f{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{(y+\Delta y)}-\log_{e}{y}}{\Delta x}}$
The difference of the logarithmic terms can be combined by using quotient rule of logarithms.
$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(\dfrac{y+\Delta y}{y}\Bigg)}}{\Delta x}}$
$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(\dfrac{y}{y}+\dfrac{\Delta y}{y}\Bigg)}}{\Delta x}}$
$=\,\,\,$ $\require{cancel} \displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(\dfrac{\cancel{y}}{\cancel{y}}+\dfrac{\Delta y}{y}\Bigg)}}{\Delta x}}$
$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\Delta x}}$
The limiting operation can be evaluated by using limit rule of logarithmic function. So, try to transform it same as the standard result.
$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\Delta x \times 1}}$
$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\Delta x \times \dfrac{\dfrac{\Delta y}{y}}{\dfrac{\Delta y}{y}} }}$
$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\Delta x \times \dfrac{\Delta y}{y} \times \dfrac{y}{\Delta y} }}$
$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y} \times \Delta x \times \dfrac{y}{\Delta y} }}$
Now, factorize the function in the limiting operation.
$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \Bigg[\dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y}}}$ $\times$ $\dfrac{1}{\Delta x \times \dfrac{y}{\Delta y}} \Bigg]$
$=\,\,\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \Bigg[\dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y}}}$ $\times$ $\dfrac{\Delta y}{\Delta x \times y} \Bigg]$
$\implies$ $\dfrac{d}{dx}{\, \log_{e}{f{(x)}}}$ $\,=\,$ $\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \Bigg[\dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y}}}$ $\times$ $\dfrac{\Delta y}{\Delta x}$ $\times$ $\dfrac{1}{y}\Bigg]$
Use the product rule of limits to find the limit of the function by the product of their limits.
$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y}}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\Delta y}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{y}\Bigg)}$
According to concept of derivative, if the change in $x$ is infinitesimal then the change in $y$ is also infinitesimal. Therefore, $\Delta y \to 0$, if $\Delta x \to 0$.
$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{\Delta y \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y}}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\Delta y}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{y}\Bigg)}$
If $\Delta y \to 0$, then $\dfrac{\Delta y}{y} \to \dfrac{0}{y}$. Therefore, $\dfrac{\Delta y}{y} \to 0$
$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{\frac{\Delta y}{y} \,\to\, 0}{\normalsize \dfrac{\log_{e}{\Bigg(1+\dfrac{\Delta y}{y}\Bigg)}}{\dfrac{\Delta y}{y}}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\Delta y}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{y}\Bigg)}$
Take $m = \dfrac{\Delta y}{y}$ and change the first factor in terms of $m$.
$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{m \,\to\, 0}{\normalsize \dfrac{\log_{e}{(1+m)}}{m}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\Delta y}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{y}\Bigg)}$
According to logarithmic limit rule, the limit of the first logarithmic function is one.
$=\,\,\,$ $1$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\Delta y}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{y}\Bigg)}$
$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{\Delta y}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{y}\Bigg)}$
Actually, $y = f{(x)}$ and $y+\Delta y = f{(x+\Delta x)}$. Therefore, $\Delta y = f{(x+\Delta x)}-f{(x)}$. Replace them in the both factors.
$=\,\,\,$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{f{(x+\Delta x)}-f{(x)}}{\Delta x}\Bigg)}$ $\times$ $\Bigg(\displaystyle \large \lim_{\Delta x \,\to\, 0}{\normalsize \dfrac{1}{f{(x)}}\Bigg)}$
According to concept of derivative, the value of the first factor is equal to the derivative of the function $f{(x)}$ with respect to $x$. Now, evaluate the third factor by the direct substitution method. The limit of reciprocal of $f{(x)}$ as change in $x$ approaches zero is remain same due to lack of change in $x$ term in the function.
$=\,\,\,$ $\Bigg(\dfrac{d}{dx}{\, f{(x)}}\Bigg)$ $\times$ $\Bigg(\dfrac{1}{f{(x)}}\Bigg)$
$=\,\,\,$ $\Bigg(\dfrac{1}{f{(x)}}\Bigg)$ $\times$ $\Bigg(\dfrac{d}{dx}{\, f{(x)}}\Bigg)$
$\,\,\, \therefore \,\,\,\,\,\,$ $\dfrac{d}{dx}{\, \log_{e}{f{(x)}}}$ $\,=\,$ ${\dfrac{1}{f{(x)}}}{\dfrac{d}{dx}{\, f{(x)}}}$
Therefore, it is proved that the derivative of logarithm of a function with respect to variable is equal to the product of the reciprocal of the function and the derivative of the function.
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the maths problems in different methods with understandable steps.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved