You have learned how to derive the value of cos 18 degrees in trigonometric method. It is time to learn how to derive the value of cosine of angle eighteen degree experimentally in geometric method. It is practically possible by constructing a right triangle (or right angled triangle) with an angle of eighteen degrees.
The three steps helped us in constructing a right triangle, known as $\Delta FDE$. In this case, the angle of the right angled triangle is $18$ degrees. So, let us evaluate the cosine of angle $\dfrac{\pi}{10}$ radian.
$\cos{(18^\circ)} \,=\, \dfrac{DE}{DF}$
The length of the adjacent side ($\overline{DE}$) is $10 \, cm$ but the length of the hypotenuse ($\overline{DF}$) is unknown. However, it can be measured by using a ruler and it is measured that the length of the hypotenuse is $10.5 \, cm$.
$\implies$ $\cos{(18^\circ)} \,=\, \dfrac{10}{10.5}$
$\implies$ $\cos{(18^\circ)} \,=\, 0.9523809523\ldots$
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved