Math Doubts

Proof of One plus Cosine double angle identity

The one plus cosine double angle identity can be written in terms of any symbol but it is popularly written in the following three forms.

$(1).\,\,\,$ $1+\cos{(2\theta)}$ $\,=\,$ $2\cos^2{\theta}$

$(2).\,\,\,$ $1+\cos{(2x)}$ $\,=\,$ $2\cos^2{x}$

$(3).\,\,\,$ $1+\cos{(2A)}$ $\,=\,$ $2\cos^2{A}$

Now, let’s learn how to prove the one plus cosine of double angle is equal to the two times the cosine squared of angle mathematically in trigonometry.

When the symbol theta denotes an angle of a right triangle, the square of cosine of angle is written as $\cos^2{\theta}$ and the cosine of double angle is written as $\cos{2\theta}$ in trigonometry.

Express Sum of One and cosine double angle

The addition of one plus cosine of double angle is written in mathematics by expressing one and cos double angle in a row with a plus sign between them.

$1+\cos{(2\theta)}$

Expand the cosine of double angle function

According to the cos double angle identity, the cosine of double angle function can be expanded in terms of cosine of angle.

$\implies$ $1+\cos{(2\theta)}$ $\,=\,$ $1+(2\cos^2{\theta}-1)$

Simplify the Trigonometric expression

Now, simplify the trigonometric expression at the right hand side of the equation for evaluating the one plus cos double angle function in mathematical form.

$\implies$ $1+\cos{(2\theta)}$ $\,=\,$ $1+2\cos^2{\theta}-1$

$\implies$ $1+\cos{(2\theta)}$ $\,=\,$ $1-1+2\cos^2{\theta}$

$\implies \require{cancel}$ $1+\cos{(2\theta)}$ $\,=\,$ $\cancel{1}-\cancel{1}+2\cos^2{\theta}$

$\,\,\,\therefore \,\,\,\,\,\,$ $1+\cos{(2\theta)}$ $\,=\,$ $2\cos^2{\theta}$

Mathematically, it is proved that the one plus cosine of double angle is equal to the two times the square of cosine of angle. It is called the one plus cosine double angle rule.

In this way, you can prove this trigonometric identity in terms of either $x$ or $A$ or any other symbol by following the same procedure.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved