A value for which a polynomial becomes zero is called a zero of a polynomial.

The polynomial is equal to zero when a particular value is substituted in the polynomial and that particular value is called a zero of the polynomial. It is also called a root of the polynomial.

Let $f(x)$ be a polynomial in variable $x$ and it is equal to zero for $x$ equals to $\alpha$, $\beta$ and $\gamma$.

- $f(\alpha) \,=\, 0$
- $f(\beta) \,=\, 0$
- $f(\gamma) \,=\, 0$

The values of alpha, beta and gamma made the polynomial $f(x)$ to become zero. Hence, $\alpha$, $\beta$ and $\gamma$ are called the zeros or zeroes of the polynomial, and also called the roots of the polynomial.

Let us understand the concept of a root or zero of a polynomial.

$2x^3$ $-$ $3x^2$ $+$ $7x$ $-$ $6$

It is an example polynomial in one variable. Substitute $x \,=\, 1$ and find the value of the polynomial.

$=\,\,\,$ $2(1)^3$ $-$ $3(1)^2$ $+$ $7(1)$ $-$ $6$

$=\,\,\,$ $2 \times (1)^3$ $-$ $3 \times (1)^2$ $+$ $7 \times (1)$ $-$ $6$

$=\,\,\,$ $2 \times 1^3$ $-$ $3 \times 1^2$ $+$ $7 \times 1$ $-$ $6$

$=\,\,\,$ $2 \times 1$ $-$ $3 \times 1$ $+$ $7 \times 1$ $-$ $6$

$=\,\,\,$ $2$ $-$ $3$ $+$ $7$ $-$ $6$

$=\,\,\,$ $2$ $+$ $7$ $-$ $3$ $-$ $6$

$=\,\,\,$ $9$ $-$ $9$

$=\,\,\,$ $0$

The value of the polynomial $2x^3$ $-$ $3x^2$ $+$ $7x$ $-$ $6$ is equal to zero when the value of $x$ equals to $1$. Therefore, the number $1$ is called a root or zero of the polynomial.

Remember that the degree of a polynomial defines the number of roots or zeros of the polynomial. In this example, the degree of the polynomial is $3$. We know that $x \,=\, 1$ is a root. So, it has two more zeroes.

Latest Math Topics

Jul 24, 2022

Jul 15, 2022

Latest Math Problems

Jul 29, 2022

Jul 17, 2022

Jun 02, 2022

Apr 06, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved