The product of binomials $x+a$ and $x-b$ is $(x+a)(x-b)$ and the expansion of the special product can be derived in algebraic method. The expansion of (x+a)(x-b) formula is actually derived by multiplying the algebraic expressions $x+a$ and $x-b$.

Multiply the algebraic expressions $x+a$ and $x-b$ for expressing the product of them in mathematical form by multiplying the algebraic expressions.

$(x+a) \times (x-b)$ $\,=\,$ $(x+a)(x-b)$

$\implies$ $(x+a)(x-b)$ $\,=\,$ $(x+a) \times (x-b)$

As per the multiplication of algebraic expressions, multiply each term of the second polynomial by the each term of the first polynomial.

$\implies$ $(x+a)(x-b)$ $\,=\,$ $x(x-b)+a(x-b)$

$\implies$ $(x+a)(x-b)$ $\,=\,$ $x \times x$ $+$ $x \times (-b)$ $+$ $a \times x$ $+a \times (-b)$

$\implies$ $(x+a)(x-b)$ $\,=\,$ $x^2-xb+ax-ab$

In this way, the special product of the multinomials $x+a$ and $x-b$ is expanded as an algebraic expression $x^2-xb+ax-ab$.

Now, the expansion of the special product of the binomials is simplified further to write it in simple form.

$\implies$ $(x+a)(x-b)$ $\,=\,$ $x^2+ax-xb-ab$

$\implies$ $(x+a)(x-b)$ $\,=\,$ $x^2+ax-bx-ab$

$\implies$ $(x+a)(x-b)$ $\,=\,$ $x^2+x(a-b)-ab$

$\,\,\, \therefore \,\,\,\,\,\,$ $(x+a)(x-b)$ $\,=\,$ $x^2+(a-b)x-ab$

Therefore, it is successfully proved that the special product of the binomials $x+a$ and $x-b$ is expanded as an algebraic expression $x^2+(a-b)x-ab$ in mathematics. Thus, the expansion of the special product of the binomials $(x+a)(x-b)$ is derived algebraically in algebraic mathematics.

Latest Math Topics

Latest Math Problems

Email subscription

Math Doubts is a best place to learn mathematics and from basics to advanced scientific level for students, teachers and researchers.
Know more

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.