The sine function can be written as cosine function and vice-versa in trigonometry on the basis of Pythagorean identity of sine and cosine functions.

There are four basic conversion formulas in trigonometry to transform sine function as cosine function and vice-versa.

Basically, there are two ways to convert sine function in terms of cosine function.

$(1)\,\,\,\,$ $\sin^2 \theta = 1 -\cos^2 \theta$

The square of sine function can be converted in terms of square of cosine function by this trigonometric formula.

$(2)\,\,\,\,$ $\sin \theta = \pm \sqrt{1 -\cos^2 \theta}$

The sine function can be written in terms of square of cosine function through a square root by this conversion trigonometric identity.

Similarly, there are two ways to transform cosine function in terms of sine function.

$(1)\,\,\,\,$ $\cos^2 \theta = 1 -\sin^2 \theta$

The square of cosine function can be transformed in terms of square of sine function by this basic trigonometric identity.

$(2)\,\,\,\,$ $\cos \theta = \pm \sqrt{1 -\sin^2 \theta}$

The cosine function can be expressed in terms of square of sine function through a square root by this transformation trigonometric identity.

Latest Math Topics

Jan 06, 2023

Jan 03, 2023

Jan 01, 2023

Dec 26, 2022

Dec 08, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved