The trigonometric function sine gives a value for every angle in a right triangle and it is called the sine value. There are many sine values in trigonometric mathematics but five sine values are mostly used in mathematics and they can be used to derive the remaining sine function values.

The special values of sine function for some standard angles are given here with proofs in a tabular form. The following sine chart is really useful in mathematics for studying the trigonometry in advanced level.

Angle $(\theta)$ | Sine value $(\sin{\theta})$ | ||||
---|---|---|---|---|---|

Degrees | Radian | Grades | Fraction | Decimal | Proof |

$0^\circ$ | $0$ | $0^g$ | $0$ | $0$ | |

$30^\circ$ | $\dfrac{\pi}{6}$ | $33\dfrac{1}{3}^g$ | $\dfrac{1}{2}$ | $0.5$ | |

$45^\circ$ | $\dfrac{\pi}{4}$ | $50^g$ | $\dfrac{1}{\sqrt{2}}$ | $0.7071$ | |

$60^\circ$ | $\dfrac{\pi}{3}$ | $66\dfrac{2}{3}^g$ | $\dfrac{\sqrt{3}}{2}$ | $0.866$ | |

$90^\circ$ | $\dfrac{\pi}{2}$ | $100^g$ | $1$ | $1$ |

The sine values for different angles are listed in the following tabular form.

Angle $(\theta)$ | Sine value $(\sin{\theta})$ | ||||
---|---|---|---|---|---|

Degrees | Radian | Grades | Fraction | Decimal | Proof |

$15^\circ$ | $\dfrac{\pi}{12}$ | $16\small\dfrac{2}{3}^{\normalsize g\,}$ | $\dfrac{\sqrt{3}-1}{2\sqrt{2}}$ | $0.2588$ | |

$18^\circ$ | $\dfrac{\pi}{10}$ | $20^g$ | $\dfrac{\sqrt{5}-1}{4}$ | $0.309$ | |

$36^\circ$ | $\dfrac{\pi}{5}$ | $40^g$ | $\dfrac{\sqrt{10-2\sqrt{5}}}{4}$ | $0.5878$ |

Latest Math Topics

Jan 06, 2023

Jan 03, 2023

Jan 01, 2023

Dec 26, 2022

Dec 08, 2022

Latest Math Problems

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

Oct 24, 2022

Sep 30, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved