The sin value when angle of a right triangle equals to $90^°$ is called sine of angle $90$ degrees. In mathematics, it is written as $\sin{(90^°)}$ according to sexagesimal system.

$\sin{(90^°)} \,=\, 1$

The value of sin of $90$ degrees is $1$ exactly and it is often called as trigonometric function (or ratio) for standard angle generally.

The $\sin{(90^°)}$ is expressed alternatively as $\sin{\Big(\dfrac{\pi}{2}\Big)}$ in circular system and also expressed mathematically as $\sin{(100^g)}$ in centesimal system.

$(1) \,\,\,$ $\sin{\Big(\dfrac{\pi}{2}\Big)} \,=\, 1$

$(2) \,\,\,$ $\sin{(100^g)} \,=\, 1$

You just learnt that the exact value of sin of $90$ degrees is $1$ and it is your turn to learn how the value of $\sin{\Big(\dfrac{\pi}{2}\Big)}$ is equal to one mathematically from a geometric proof.

Latest Math Topics

Jan 06, 2023

Jan 03, 2023

Jan 01, 2023

Dec 26, 2022

Dec 08, 2022

Latest Math Problems

Jan 31, 2023

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved