$\sin{30^°}$ $\,=\,$ $\dfrac{1}{2}$

When angle of a right triangle is $30^°$, the value of ratio of lengths of opposite side (perpendicular) to hypotenuse is called sine of $30$ degrees and it is simply called as sin $30$ degrees.

Sine of angle $30$ degrees is written as $\sin{30^°}$ mathematically in sexagesimal system.

The exact value of sin $30$ degrees in fraction is equal to $\dfrac{1}{2}$.

$\sin{30^{°}} \,=\, \dfrac{1}{2}$

The exact value of sine $30$ degrees in decimal equals to $0.5$.

$\sin{30^{°}} \,=\, 0.5$

It is written as $\sin{\Big(\dfrac{\pi}{6}\Big)}$ in circular system.

$\sin{\Big(\dfrac{\pi}{6}\Big)} \,=\, \dfrac{1}{2} = 0.5$

It is written as $\sin{\Big(33\dfrac{1}{3}\Big)}$ in centesimal system.

$\sin{\Big(\dfrac{\pi}{6}\Big)} \,=\, \dfrac{1}{2} = 0.5$

The value of $\sin{\Big(\dfrac{\pi}{6}\Big)}$ can be derived in trigonometry by geometrical approach. It can be derived possibly in two geometrical methods.

Learn how to derive the value of sin of angle $30$ degrees in theoretical geometric method by considering a special relation between lengths of opposite side and hypotenuse when angle of right triangle is $30^°$.

Learn how to derive the value of sine $30$ degrees in geometrical approach experimentally by constructing a right triangle with an angle of $30$ degrees.

List of most recently solved mathematics problems.

Jul 04, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \,\to\, \tan^{-1}{3}} \normalsize {\dfrac{\tan^2{x}-2\tan{x}-3}{\tan^2{x}-4\tan{x}+3}}$

Jun 23, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \to 0} \normalsize \dfrac{e^{x^2}-\cos{x}}{x^2}$

Jun 22, 2018

Integral Calculus

Evaluate $\displaystyle \int \dfrac{1+\cos{4x}}{\cot{x}-\tan{x}} dx$

Jun 21, 2018

Limit

Evaluate $\displaystyle \large \lim_{x \to \infty} \normalsize {\sqrt{x^2+x+1}-\sqrt{x^2+1}}$

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.