Math Doubts

$\sin{(30^°)}$ value

Value

$\sin{30^°}$ $\,=\,$ $\dfrac{1}{2}$

Introduction

When angle of a right triangle is $30^°$, the value of ratio of lengths of opposite side (perpendicular) to hypotenuse is called sine of $30$ degrees and it is simply called as sin $30$ degrees.

Sexagesimal System

Sine of angle $30$ degrees is written as $\sin{30^°}$ mathematically in sexagesimal system.

The exact value of sin $30$ degrees in fraction is equal to $\dfrac{1}{2}$.

$\sin{30^{°}} \,=\, \dfrac{1}{2}$

The exact value of sine $30$ degrees in decimal equals to $0.5$.

$\sin{30^{°}} \,=\, 0.5$

Circular system

It is written as $\sin{\Big(\dfrac{\pi}{6}\Big)}$ in circular system.

$\sin{\Big(\dfrac{\pi}{6}\Big)} \,=\, \dfrac{1}{2} = 0.5$

Centesimal System

It is written as $\sin{\Big(33\dfrac{1}{3}\Big)}$ in centesimal system.

$\sin{\Big(\dfrac{\pi}{6}\Big)} \,=\, \dfrac{1}{2} = 0.5$

Proof

The value of $\sin{\Big(\dfrac{\pi}{6}\Big)}$ can be derived in trigonometry by geometrical approach. It can be derived possibly in two geometrical methods.

Theoretical Approach

Learn how to derive the value of sin of angle $30$ degrees in theoretical geometric method by considering a special relation between lengths of opposite side and hypotenuse when angle of right triangle is $30^°$.

Practical Approach

Learn how to derive the value of sine $30$ degrees in geometrical approach experimentally by constructing a right triangle with an angle of $30$ degrees.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved