Take two quantities and write them in product form as equal number of factors ($m$) on the basis of two different quantities $b$ and $c$. The two quantities are expressed in exponential notation as $b^{\displaystyle m}$ and $c^{\displaystyle m}$ respectively.

$(1) \,\,\,$ $b^{\displaystyle m} \,=\, \underbrace{b \times b \times b \ldots b}_{\displaystyle m \, factors}$

$(2) \,\,\,$ $c^{\displaystyle m} \,=\, \underbrace{c \times c \times c \ldots c}_{\displaystyle m \, factors}$

Now, let’s learn the process of deriving the power of a product rule in mathematics.

To obtain the product of them, multiply the same exponents with different bases.

$\implies$ $b^{\displaystyle m} \times c^{\displaystyle m}$ $\,=\,$ $\Bigg(\underbrace{b \times b \times b \ldots b}_{\displaystyle m \, factors}\Bigg)$ $\times$ $\Bigg(\underbrace{c \times c \times c \ldots c}_{\displaystyle m \, factors}\Bigg)$

$b$ and $c$ are two unlike terms and they both are factored as $m$ factors in the product. If the unlike terms are multiplied each other, the total number of factors is also equal to $m$.

$\implies$ $b^{\displaystyle m} \times c^{\displaystyle m}$ $\,=\,$ $\underbrace{(b \times c) \times (b \times c) \times (b \times c) \times \ldots (b \times c)}_{\displaystyle m \, factors}$

The total number of multiplying factors of product of different bases $b$ and $c$ is also $m$. As per exponentiation, it can be written in exponential notation as follows.

$\,\,\, \therefore \,\,\,\,\,\,$ $b^{\displaystyle m} \times c^{\displaystyle m} = (b \times c)^{\displaystyle m}$

Therefore, it is proved that product of same exponents with different bases is equal to the exponent with product of the bases. This product rule can also be used for more than two terms in the mathematics.

$b^{\displaystyle m} \times c^{\displaystyle m} \times d^{\displaystyle m} \ldots$ $\,=\,$ $(b \times c \times d \ldots)^{\displaystyle m}$

Latest Math Topics

Jan 06, 2023

Jan 03, 2023

Jan 01, 2023

Dec 26, 2022

Dec 08, 2022

Latest Math Problems

Jan 31, 2023

Nov 25, 2022

Nov 02, 2022

Oct 26, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved