Math Doubts

Product Law of Logarithms

Formula

$\log_{b}{(m \times n)}$ $\,=\,$ $\log_{b}{m}+\log_{b}{n}$

The logarithm of product of quantities equals to sum of their logs is called the product rule of logarithms.

Proof

Learn how to prove logarithm of product of two or more quantities is equal to sum of their logs.

Use

Learn how to use property of product law of logarithms in mathematics.

Verification

The fundamental product rule of logarithm can be verified in mathematics by using numerical method.

Take $m = 2$ and $n = 3$

$\log_{\displaystyle 10} 2 = 0.3010$ and $\log_{\displaystyle 10} 3 = 0.4771$. Now add both of them.

$\log_{\displaystyle 10} 2 + \log_{\displaystyle 10} 3 = 0.3010 + 0.4771$

$\log_{\displaystyle 10} 2 + \log_{\displaystyle 10} 3 = 0.7781$

Now calculate logarithm of product of both numbers

$\log_{\displaystyle 10} (2 \times 3) = \log_{\displaystyle 10} (6)$

$\implies \log_{\displaystyle 10} 6 = 0.7781$

$\therefore \,\,\,\,\, \log_{\displaystyle 10} (2 \times 3)$ $=$ $\log_{\displaystyle 10} 2 + \log_{\displaystyle 10} 3$ $=$ $0.7781$

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved