$\displaystyle \large \lim_{x \,\to\, a}{\normalsize b^{\displaystyle f(x)}} \normalsize \,=\, b^{\, \displaystyle \large \lim_{x \,\to\, a} \, {\normalsize f(x)}}$
The limit of an exponential function is equal to the limit of the exponent with same base. It is called the limit rule of an exponential function.
Let $a$ and $b$ represent two constants, and $x$ represents a variable. A function in terms of $x$ is written as $f(x)$ mathematically. In this case, the constant $a$ is a value of $x$, and the exponential function in terms of $b$ and $f(x)$ is written as $b^{\displaystyle f(x)}$ in mathematics.
The limit of exponential function $b^{\displaystyle f(x)}$ as $x$ approaches $a$ is written in the following mathematical form in calculus.
$\displaystyle \large \lim_{x \,\to\, a}{\normalsize b^{\displaystyle f(x)}}$
It is equal to the limit of the function $f(x)$ as $x$ approaches $a$ with the base $b$.
$\implies$ $\displaystyle \large \lim_{x \,\to\, a}{\normalsize b^{\displaystyle f(x)}} \normalsize \,=\, b^{\, \displaystyle \large \lim_{x \,\to\, a} \, {\normalsize f(x)}}$
It is called the limit rule of an exponential function in calculus.
Evaluate $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \Big(3^{\displaystyle x+2}\Big)}$
Find the value of the given function by direct substitution.
$\implies$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \Big(3^{\displaystyle x+2}\Big)}$ $\,=\,$ $3^{\displaystyle 1+2}$
$\implies$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \Big(3^{\displaystyle x+2}\Big)}$ $\,=\,$ $3^{\displaystyle 3}$
$\implies$ $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \Big(3^{\displaystyle x+2}\Big)}$ $\,=\,$ $27$
Now, evaluate $3^{\, \displaystyle \large \lim_{x \,\to\, 1}{\normalsize (x+2)}}$ by direct substitution.
$\implies$ $3^{\, \displaystyle \large \lim_{x \,\to\, 1}{\normalsize (x+2)}}$ $\,=\,$ $3^{(1+2)}$
$\implies$ $3^{\, \displaystyle \large \lim_{x \,\to\, 1}{\normalsize (x+2)}}$ $\,=\,$ $3^{3}$
$\implies$ $3^{\, \displaystyle \large \lim_{x \,\to\, 1}{\normalsize (x+2)}}$ $\,=\,$ $27$
Therefore, it is evaluated that $\displaystyle \large \lim_{x \,\to\, 1}{\normalsize \Big(3^{\displaystyle x+2}\Big)}$ $\,=\,$ $3^{\, \displaystyle \large \lim_{x \,\to\, 1}{\normalsize (x+2)}}$ $\,=\,$ $27$
Learn how to derive the limit rule of an exponential function in calculus mathematically.
A best free mathematics education website for students, teachers and researchers.
Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.
Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.
Copyright © 2012 - 2022 Math Doubts, All Rights Reserved