$\displaystyle \Large \lim_{x \,\to\, 0} \large \dfrac{a^{\displaystyle \normalsize x}-1}{x} \,=\, \log_{e}{a}$

$a$ and $x$ are two literal numbers but $a$ represents a constant and $x$ represents a variable. The ratio of subtraction of one from the $a$ raised to the power of $x$ to literal number $x$ is written as follows.

$\dfrac{a^{\displaystyle \normalsize x}-1}{x}$

The value of this function is requisite when the value of $x$ tends to zero. It is expressed in limit by the calculus in mathematical form in the following way.

$\displaystyle \large \lim_{x \,\to\, 0} \normalsize \dfrac{a^{\displaystyle \normalsize x}-1}{x}$

Learn how to derive limit of $\dfrac{a^{\displaystyle \normalsize x}-1}{x}$ as $x$ approaches $0$ in calculus.

List of most recently solved mathematics problems.

Jul 04, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \,\to\, \tan^{-1}{3}} \normalsize {\dfrac{\tan^2{x}-2\tan{x}-3}{\tan^2{x}-4\tan{x}+3}}$

Jun 23, 2018

Limit (Calculus)

Evaluate $\displaystyle \large \lim_{x \to 0} \normalsize \dfrac{e^{x^2}-\cos{x}}{x^2}$

Jun 22, 2018

Integral Calculus

Evaluate $\displaystyle \int \dfrac{1+\cos{4x}}{\cot{x}-\tan{x}} dx$

Jun 21, 2018

Limit

Evaluate $\displaystyle \large \lim_{x \to \infty} \normalsize {\sqrt{x^2+x+1}-\sqrt{x^2+1}}$

Learn how to solve easy to difficult mathematics problems of all topics in various methods with step by step process and also maths questions for practising.