Math Doubts

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{x}}{x}}$ formula


$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{x}}{x}} \,=\, 1$

The limit of quotient of inverse sine function by a variable as the input approaches zero is equal to one. It is a standard result in calculus and used as a formula in mathematics.


Assume $x$ is a variable and represents the ratio of lengths of opposite side to hypotenuse in a right triangle. The inverse sine function in terms of $x$ is written as $\sin^{-1}{x}$ or $\arcsin{x}$ in inverse trigonometry.

The limit of the $\arcsin{x}$ by $x$ as $x$ approaches zero is written in mathematical form as follows.

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{x}}{x}}$

In fact, the limit of $\arcsin{(x)}/x$ as $x$ tends to $0$ is equal to $1$. It is used often appeared in calculus. So, this standard inverse trigonometric function result is used as a formula in calculus.

Other forms

The limit rule of inverse trigonometric function can be written in several ways in calculus.

$(1) \,\,\,$ $\displaystyle \large \lim_{m \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{m}}{m}}$ $\,=\,$ $1$

$(2) \,\,\,$ $\displaystyle \large \lim_{p \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{p}}{p}}$ $\,=\,$ $1$

$(3) \,\,\,$ $\displaystyle \large \lim_{y \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{y}}{y}}$ $\,=\,$ $1$


Learn how to prove that the limit of $\arcsin{(x)}/x$ as $x$ tends to zero is equal to one in calculus.

Math Questions

The math problems with solutions to learn how to solve a problem.

Learn solutions

Math Worksheets

The math worksheets with answers for your practice with examples.

Practice now

Math Videos

The math videos tutorials with visual graphics to learn every concept.

Watch now

Subscribe us

Get the latest math updates from the Math Doubts by subscribing us.

Learn more

Math Doubts

A free math education service for students to learn every math concept easily, for teachers to teach mathematics understandably and for mathematicians to share their maths researching projects.

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved