$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{x}}{x}} \,=\, 1$

The limit of quotient of inverse sine function by a variable as the input approaches zero is equal to one. It is a standard result in calculus and used as a formula in mathematics.

Assume $x$ is a variable and represents the ratio of lengths of opposite side to hypotenuse in a right triangle. The inverse sine function in terms of $x$ is written as $\sin^{-1}{x}$ or $\arcsin{x}$ in inverse trigonometry.

The limit of the $\arcsin{x}$ by $x$ as $x$ approaches zero is written in mathematical form as follows.

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{x}}{x}}$

In fact, the limit of $\arcsin{(x)}/x$ as $x$ tends to $0$ is equal to $1$. It is used often appeared in calculus. So, this standard inverse trigonometric function result is used as a formula in calculus.

The limit rule of inverse trigonometric function can be written in several ways in calculus.

$(1) \,\,\,$ $\displaystyle \large \lim_{m \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{m}}{m}}$ $\,=\,$ $1$

$(2) \,\,\,$ $\displaystyle \large \lim_{p \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{p}}{p}}$ $\,=\,$ $1$

$(3) \,\,\,$ $\displaystyle \large \lim_{y \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{y}}{y}}$ $\,=\,$ $1$

Learn how to prove that the limit of $\arcsin{(x)}/x$ as $x$ tends to zero is equal to one in calculus.

Latest Math Topics

Dec 13, 2023

Jul 20, 2023

Jun 26, 2023

Latest Math Problems

Jan 30, 2024

Oct 15, 2023

Copyright © 2012 - 2023 Math Doubts, All Rights Reserved