Math Doubts

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{x}}{x}}$ formula

Formula

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{x}}{x}} \,=\, 1$

The limit of quotient of inverse sine function by a variable as the input approaches zero is equal to one. It is a standard result in calculus and used as a formula in mathematics.

Introduction

Assume $x$ is a variable and represents the ratio of lengths of opposite side to hypotenuse in a right triangle. The inverse sine function in terms of $x$ is written as $\sin^{-1}{x}$ or $\arcsin{x}$ in inverse trigonometry.

The limit of the $\arcsin{x}$ by $x$ as $x$ approaches zero is written in mathematical form as follows.

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{x}}{x}}$

In fact, the limit of $\arcsin{(x)}/x$ as $x$ tends to $0$ is equal to $1$. It is used often appeared in calculus. So, this standard inverse trigonometric function result is used as a formula in calculus.

Other forms

The limit rule of inverse trigonometric function can be written in several ways in calculus.

$(1) \,\,\,$ $\displaystyle \large \lim_{m \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{m}}{m}}$ $\,=\,$ $1$

$(2) \,\,\,$ $\displaystyle \large \lim_{p \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{p}}{p}}$ $\,=\,$ $1$

$(3) \,\,\,$ $\displaystyle \large \lim_{y \,\to\, 0}{\normalsize \dfrac{\sin^{-1}{y}}{y}}$ $\,=\,$ $1$

Proof

Learn how to prove that the limit of $\arcsin{(x)}/x$ as $x$ tends to zero is equal to one in calculus.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the math problems in different methods with understandable steps and worksheets on every concept for your practice.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2022 Math Doubts, All Rights Reserved