Math Doubts

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {(1+x)}^{\frac{1}{x}}}$ Proof

The limit of $1/x$-th power of $1+x$ as $x$ approaches $0$ is a standard result in limits and it is used as a rule to evaluate the limits of algebraic functions which are exponential form. So, let’s us first prove this in calculus to use it as a formula in mathematics.

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {(1+x)}^{\frac{1}{x}}}$

Expand the Binomial function

The exponential function in algebraic form is in the form of Binomial Theorem. So, it can be expanded infinitely on the basis of this theorem.

${(1+x)}^{\displaystyle n}$ $\,=\,$ $1$ $+$ $\dfrac{n}{1!} x$ $+$ $\dfrac{n(n-1)}{2!} x^2$ $+$ $\dfrac{n(n-1)(n-3)}{3!} x^3$ $+$ $\cdots$

There is no much difference between them but replace $n$ by $\dfrac{1}{x}$.

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {(1+x)}^{\frac{1}{x}}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, 0} \,$ $\Bigg[1 + \dfrac{\Bigg(\dfrac{1}{x}\Bigg)}{1!}{x}$ $+$ $\dfrac{\Bigg(\dfrac{1}{x}\Bigg)\Bigg(\dfrac{1}{x}-1\Bigg)}{2!}{x^2}$ $+$ $\dfrac{\Bigg(\dfrac{1}{x}\Bigg)\Bigg(\dfrac{1}{x}-1\Bigg)\Bigg(\dfrac{1}{x}-2\Bigg)}{3!}{x^3} + \cdots \Bigg]$

Now, simplify each term in this series and it helps us to evaluate the limit of this exponential function in the next few steps.

$=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \,$ $\Bigg[1 + \dfrac{\Bigg(\dfrac{1}{x}\Bigg)}{1!}{x}$ $+$ $\dfrac{\Bigg(\dfrac{1}{x}\Bigg)\Bigg(\dfrac{1-x}{x}\Bigg)}{2!}{x^2}$ $+$ $\dfrac{\Bigg(\dfrac{1}{x}\Bigg)\Bigg(\dfrac{1-x}{x}\Bigg)\Bigg(\dfrac{1-2x}{x}\Bigg)}{3!}{x^3}$ $+$ $\cdots$ $\Bigg]$

$=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \,$ $\Bigg[1 + \dfrac{\Bigg(\dfrac{1}{x}\Bigg)}{1!}{x}$ $+$ $\dfrac{\Bigg(\dfrac{1 \times (1-x)}{x^2}\Bigg)}{2!}{x^2}$ $+$ $\dfrac{\Bigg(\dfrac{1 \times (1-x) \times (1-2x)}{x^3}\Bigg)}{3!}{x^3}$ $+$ $\cdots$ $\Bigg]$

$=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \,$ $\Bigg[1 + \dfrac{\Bigg(\dfrac{1}{x}\Bigg)}{1!}{x}$ $+$ $\dfrac{\Bigg(\dfrac{1-x}{x^2}\Bigg)}{2!}{x^2}$ $+$ $\dfrac{\Bigg(\dfrac{(1-x)(1-2x)}{x^3}\Bigg)}{3!}{x^3}$ $+$ $\cdots$ $\Bigg]$

$=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \,$ $\Bigg[1 + \dfrac{1}{1! \times x}{x}$ $+$ $\dfrac{1-x}{2! \times x^2}{x^2}$ $+$ $\dfrac{(1-x)(1-2x)}{3! \times x^3}{x^3}$ $+$ $\cdots$ $\Bigg]$

$=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \,$ $\Bigg[1 + \dfrac{x}{1! \times x}$ $+$ $\dfrac{(1-x)(x^2)}{2! \times x^2}$ $+$ $\dfrac{(1-x)(1-2x)(x^3) }{3! \times x^3}$ $+$ $\cdots$ $\Bigg]$

$=\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0} \,$ $\require{cancel} \Bigg[1 + \dfrac{\cancel{x}}{1! \times \cancel{x}}$ $+$ $\require{cancel} \dfrac{(1-x)(\cancel{x^2})}{2! \times \cancel{x^2}}$ $+$ $\require{cancel} \dfrac{(1-x)(1-2x)(\cancel{x^3}) }{3! \times \cancel{x^3}}$ $+$ $\cdots$ $\Bigg]$

$\therefore \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {(1+x)}^{\frac{1}{x}}}$ $\,=\,$ $\displaystyle \large \lim_{x \,\to\, 0} \,$ $\Bigg[1 + \dfrac{1}{1!}$ $+$ $\dfrac{(1-x)}{2!}$ $+$ $\dfrac{(1-x)(1-2x)}{3!}$ $+$ $\cdots$ $\Bigg]$

Evaluate the Limit of exponential function

Evaluate the limit of the infinite series as $x$ approaches $0$ and it is equal to the limit of exponential function in algebraic form as $x$ tends to $0$.

$\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {(1+x)}^{\frac{1}{x}}}$ $\,=\,$ $1$ $+$ $\dfrac{1}{1!}$ $+$ $\dfrac{(1-(0))}{2!}$ $+$ $\dfrac{(1-(0))(1-2(0))}{3!}$ $+$ $\cdots$

$\,=\,$ $1 + \dfrac{1}{1!}$ $+$ $\dfrac{1}{2!}$ $+$ $\dfrac{1 \times 1}{3!} + \cdots$

$\therefore \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {(1+x)}^{\frac{1}{x}}}$ $\,=\,$ $1 + \dfrac{1}{1!}$ $+$ $\dfrac{1}{2!}$ $+$ $\dfrac{1}{3!} + \cdots$

Evaluate the series

The infinite series represents the expansion of natural exponential function when its exponent is equal to one.

$e^{\displaystyle x} \,=\,$ $1 + \dfrac{x}{1!}$ $+$ $\dfrac{x^2}{2!}$ $+$ $\dfrac{x^3}{3!} + \cdots$

Put $x = 1$

$e^1 \,=\,$ $1 + \dfrac{1}{1!}$ $+$ $\dfrac{1^2}{2!}$ $+$ $\dfrac{1^3}{3!} + \cdots$

$e \,=\,$ $1 + \dfrac{1}{1!}$ $+$ $\dfrac{1}{2!}$ $+$ $\dfrac{1}{3!} + \cdots$

The value of $e$ in infinite series and the limit of exponential function as $x$ approaches $0$ are same.

$\implies$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {(1+x)}^{\frac{1}{x}}}$ $\,=\,$ $1$ $+$ $\dfrac{1}{1!}$ $+$ $\dfrac{1}{2!}$ $+$ $\dfrac{1}{3!}$ $+$ $\cdots$ $\,=\,$ $e$

$\,\,\, \therefore \,\,\,\,\,\,$ $\displaystyle \large \lim_{x \,\to\, 0}{\normalsize {(1+x)}^{\frac{1}{x}}}$ $\,=\,$ $e$

Therefore, the limit of the exponential function ${(1+x)}^{\frac{1}{x}}$ as $x$ approaches zero is equal to $e$.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved