Math Doubts

Integral Rule of Secant function

Formula

$\displaystyle \int{\sec{x}}\,dx$ $\,=\,$ $\log_{e}{|\sec{x}+\tan{x}|}+c$

The integral of secant is equal to the natural logarithm of sum of secant and tan functions

Introduction

Let $x$ be a variable and also represents an angle of a right triangle (or right-angled triangle). The secant of angle $x$ is written in mathematical form as $\sec{x}$ in trigonometry mathematics.

The indefinite integral of the secant of angle $x$ with respect to $x$ is written in mathematical form as follows.

$\displaystyle \int{\sec{x}}\,dx$

The indefinite integral of secant of angle $x$ is equal to the natural logarithm of secant of angle $x$ plus tan of angle $x$, and plus the constant of integration.

$\implies$ $\displaystyle \int{\sec{x}}\,dx$ $\,=\,$ $\log_{e}{|\sec{x}+\tan{x}|}+c$

According to the logarithms, the natural logarithm is also written in the following form simply in mathematics.

$\implies$ $\displaystyle \int{\sec{x}}\,dx$ $\,=\,$ $\ln{|\sec{x}+\tan{x}|}+c$

Alternative forms

The integral rule of secant function can be written in terms of any variable.

$(1).\,\,\,$ $\displaystyle \int{\sec{u}}\,du$ $\,=\,$ $\log_{e}{|\sec{u}+\tan{u}|}+c$

$(2).\,\,\,$ $\displaystyle \int{\sec{t}}\,dt$ $\,=\,$ $\log_{e}{|\sec{t}+\tan{t}|}+c$

$(3).\,\,\,$ $\displaystyle \int{\sec{y}}\,dy$ $\,=\,$ $\log_{e}{|\sec{y}+\tan{y}|}+c$

Proof

Learn how to prove the integral rule of secant function in integral calculus.

Math Doubts

A best free mathematics education website for students, teachers and researchers.

Maths Topics

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Maths Problems

Learn how to solve the maths problems in different methods with understandable steps.

Learn solutions

Subscribe us

You can get the latest updates from us by following to our official page of Math Doubts in one of your favourite social media sites.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved