$\displaystyle \int{\dfrac{1}{x^2+a^2}\,}dx$ $\,=\,$ $\dfrac{1}{a}\tan^{-1}{\Big(\dfrac{x}{a}\Big)}+c$

When $x$ represents a variable and $a$ represents a constant, the multiplicative inverse of sum of their squares is written in the following mathematical form.

$\dfrac{1}{x^2+a^2}$

The indefinite integral of reciprocal of sum of squares with respect to $x$ is expressed mathematically in the following form.

$\implies$ $\displaystyle \int{\dfrac{1}{x^2+a^2}\,}dx$

The indefinite integration of multiplicative inverse of sum of squares is equal to the sum of product of reciprocal of constant and inverse tan of quotient of variable by constant, and constant of integration.

$\implies$ $\displaystyle \int{\dfrac{1}{x^2+a^2}\,}dx$ $\,=\,$ $\dfrac{1}{a}\tan^{-1}{\Big(\dfrac{x}{a}\Big)}+c$

It can also be written in following mathematical form.

$\implies$ $\displaystyle \int{\dfrac{1}{x^2+a^2}\,}dx$ $\,=\,$ $\dfrac{1}{a}\arctan{\Big(\dfrac{x}{a}\Big)}+c$

The indefinite integration formula for the reciprocal of sum of squares can be written in terms of any variables as exampled here.

$(1) \,\,\,$ $\displaystyle \int{\dfrac{1}{g^2+b^2}\,}dg$ $\,=\,$ $\dfrac{1}{b}\tan^{-1}{\Big(\dfrac{g}{b}\Big)}+c$

$(2) \,\,\,$ $\displaystyle \int{\dfrac{1}{m^2+k^2}\,}dm$ $\,=\,$ $\dfrac{1}{k}\arctan{\Big(\dfrac{m}{k}\Big)}+c$

$(3) \,\,\,$ $\displaystyle \int{\dfrac{1}{z^2+q^2}\,}dz$ $\,=\,$ $\dfrac{1}{q}\tan^{-1}{\Big(\dfrac{z}{q}\Big)}+c$

Evaluate $\displaystyle \int{\dfrac{1}{y^2+2^2}\,}dy$

Take $x = y$ and $a = 2$ and substitute them in this formula to evaluate the integration.

$\implies$ $\displaystyle \int{\dfrac{1}{y^2+2^2}\,}dy$ $\,=\,$ $\dfrac{1}{2}\tan^{-1}{\Big(\dfrac{y}{2}\Big)}+c$

Learn how to derive the indefinite integration formula for reciprocal of sum of squares.

Latest Math Topics

Apr 18, 2022

Apr 14, 2022

Apr 05, 2022

Mar 18, 2022

Mar 05, 2022

Latest Math Problems

Apr 06, 2022

Mar 22, 2022

A best free mathematics education website for students, teachers and researchers.

Learn each topic of the mathematics easily with understandable proofs and visual animation graphics.

Learn how to solve the maths problems in different methods with understandable steps.

Copyright © 2012 - 2021 Math Doubts, All Rights Reserved